Skip to main content
Log in

Linear Trends in Botanical Systematics and the Major Trends of Xylem Evolution

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

For nearly a century the so-called Major Trends of Xylem Evolution have guided thinking regarding wood evolution, but their conceptual foundations have not been examined. I detail and critique nine tenets of Major Trends thinking, including the use of linear schemes to infer phylogeny, the Haeckelian assumption that ontogeny recapitulates phylogeny, the use of homoplasies in phylogeny estimation, and the view of evolution as inexorable progress. In addition, I identify some six meanings of the key term “specialization,” ranging from the notion of division of labor between cell types to the relative position of a taxon in a linear hierarchy. The Trends in their original formulation of 1918–1957 show virtually no overlap with the Trends as currently construed. I suggest that the Trends were based on a conceptual foundation outdated at their outset and that they are unnecessary for any study of plant phylogeny or adaptation.

Resumen

Las llamadas “Tendencias Mayores en la Evolución del Xilema” han orientado el pensamiento científico sobre la evolución de la madera por más de un siglo. Sin embargo, los fundamentos conceptuales de las Tendencias nunca han sido examinados de manera detallada. Aquí examino críticamente nueve preceptos de las Tendencias, tales como el uso de esquemas lineales para inferir filogenias, el supuesto haeckeliano de que la ontogenia recapitula la filogenia, el uso de homoplasias para reconstruir filogenias y la práctica de concebir la evolución como un proceso con progreso inevitable. Además, identifico seis sentidos de “especialización,” quizás el término más importante del esquema baileyano. Las varias definiciones de “especializción” incluyen “división de labores” y posiciones relativas de taxones en una jerarquía lineal. Las Tendencias, en su formulación original 1918–1957 presentan un traslape casi nulo con las Tendencias como se suelen interpretar actualmente. Concluyo que las Tendencias se basaron en un esquema conceptual anticuado desde su inicio y que son irrelevantes para cualquier estudio de evolución o adaptación vegetal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Literature Cited

  • Adamowicz, S. J. & A. Purvis. 2006. From more to fewer? Testing an allegedly pervasive trend in the evolution of morphological structure. Evolution 60: 1402–1416.

    PubMed  Google Scholar 

  • Allen, G. 1969. Hugo de Vries and the reception of the “mutation theory.”. Journal of the History of Biology 2: 55–87.

    Google Scholar 

  • Alverson, W. S., B. A. Whitlock, R. Nyffeler, C. Bayer & D. A. Baum. 1999. Phylogeny of the core Malvales: evidence from ndhF sequence data. American Journal of Botany 86: 1474–1486.

    PubMed  CAS  Google Scholar 

  • Amundson, R. 2005. The changing role of the embryo in evolutionary thought. Cambridge University Press, Cambridge.

    Google Scholar 

  • ——— & E. A. Wheeler. 1996. Parallelism and reversibility in xylem evolution: A review. IAWA Journal 17: 351–364.

    Google Scholar 

  • ———, E. Werker & A. Fahn. 1983. Some ecological trends in vessel characters. IAWA Bulletin 4: 141–159.

    Google Scholar 

  • Bailey, I. W. 1910. Reversionary characters of traumatic oak woods. Botanical Gazette 50: 374–380.

    Google Scholar 

  • ——— 1920. The cambium and its derivative tissues II. Size variations of cambial initials in gymnosperms and angiosperms. American Journal of Botany 7: 355–367.

    Google Scholar 

  • ——— 1924. Notes on neotropical ant-plants. III. Cordia nodosa Lam. Botanical Gazette 77: 32–49.

    Google Scholar 

  • ——— 1944. The development of vessels in angiosperms and its significance in morphological research. American Journal of Botany 31: 421–428.

    Google Scholar 

  • ——— 1953. Evolution of the tracheary tissue of land plants. American Journal of Botany 40: 4–8.

    Google Scholar 

  • ——— 1957. The potentialities and limitations of wood anatomy in the study of the phylogeny and classification of angiosperms. Journal of the Arnold Arboretum 38: 243–254.

    Google Scholar 

  • ——— & R. A. Howard. 1941. The comparative morphology of the Icacinaceae II. Vessels. Journal of the Arnold Arboretum 22: 171–187.

    Google Scholar 

  • ——— & W. P. Thompson. 1918. Additional notes upon the angiosperms Tetracentron, Trochodendron, and Drimys. Annals of Botany 32: 503–512.

    Google Scholar 

  • ——— & W. W. Tupper. 1918. Size variation in tracheary cells: I. A comparison between the secondary xylems of vascular cryptogams, gymnosperms and angiosperms. Proceedings of the American Academy of Arts and Sciences USA 54: 147–204.

    Google Scholar 

  • Barghoorn, E. S. 1940. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. I. The primitive ray structure. American Journal of Botany 27: 918–928.

    Google Scholar 

  • ——— 1941. The ontogenetic development and phylogenetic specializtion of rays in the xylem of dicotyledons. II. Modification of the multiseriate and uniseriate rays. American Journal of Botany 28: 273–282.

    Google Scholar 

  • Bateman, R. A., W. A. DiMichele & D. A. Willard. 1992. Experimental cladistic analysis of anatomically preserved arborescent lycopsids from the Carboniferous of Euramerica: An essay on paleobotanical phylogenetics. Annals of the Missouri Botanical Garden 79: 500–559.

    Google Scholar 

  • Beck, C. B. 2010. An introduction to plant structure and development: Plant anatomy for the twenty-first century, ed. 2nd. Cambridge University Press, Cambridge.

    Google Scholar 

  • Blokhina, N. I. 2007. Fossil wood of the Juglandaceae: some questions of taxonomy, evolution, and phylogeny in the family based on wood anatomy. Paleontological Journal 41: 1040–1053.

    Google Scholar 

  • Bonner, J. T. 2006. Why size matters. Princeton University Press, Princeton.

    Google Scholar 

  • Bradford, J. C. & R. W. Barnes. 2001. Phylogenetics and classification of Cunoniaceae (Oxalidales) using chloroplast DNA sequences and morphology. Systematic Botany 26: 354–385.

    Google Scholar 

  • Brown, S. 2008. Top billing for platypus at end of evolution tree. Nature 453: 138–139.

    PubMed  CAS  Google Scholar 

  • Bryant, H. 1995. The threefold parallelism of Agassiz and Haeckel, and polarity determination in phylogenetic systematics. Biology and Philosophy 10: 197–217.

    Google Scholar 

  • Buss, L. 1987. The evolution of individuality. Princeton University Press, Princeton.

    Google Scholar 

  • Carlquist, S. 1961. Comparative plant anatomy. Holt, Rinehart & Winston, New York.

    Google Scholar 

  • ——— 1962. A theory of paedomorphosis in dicotyledonous woods. Phytomorphology 12: 30–45.

    Google Scholar 

  • ——— 1966. Wood anatomy of Compositae: a summary, with comments on factors controlling wood evolution. Aliso 6: 25–44.

    Google Scholar 

  • ——— 1975. Ecological strategies of xylem evolution. University of California Press, Berkeley.

    Google Scholar 

  • ——— 1980. Further concepts in ecological wood anatomy, with comments on recent work in wood anatmy and evolution. Aliso 9: 499–553.

    Google Scholar 

  • ——— 1987. Presence of vessels in wood of Sarcandra (Chloranthaceae); comments on vessel origins in angiosperms. Amer. J. Bot. 74: 1765–1771.

    Google Scholar 

  • ——— 2001. Comparative wood anatomy, ed. 2nd. Springer Verlag, Berlin.

    Google Scholar 

  • ——— 2007. Wood anatomy of Crossosomatales: patterns of wood evolution with relation to phylogeny and ecology. Aliso 24: 1–18.

    Google Scholar 

  • Carlquist, S. 2009. Xylem heterochrony: an unappreciated key to angiosperm origin and diversifications. Botanical Journal of the Linnean Society 161: 26–65

  • ——— 2010. Caryophyllales: a key group for understanding wood anatomy character states and their evolution. Botanical Journal of the Linnean Society 164: 342–393.

    Google Scholar 

  • ——— & E. L. Schneider. 2002. The tracheid-vessel element transition in angiosperms involves multiple independent features: cladistic consequences. American Journal of Botany 89: 185–195.

    PubMed  Google Scholar 

  • ——— & ———. 2004. Pit membrane remnants in perforation plates of Hydrangeales; comments on pit membrane remnant occurrence, physiological significance, and phylogenetic distribution in dicotyledons. Botanical Journal of the Linnean Society 146: 41–51.

    Google Scholar 

  • Chaffey, N. 2008. Plant anatomy: an applied approach. Annals of Botany 102: 481–482.

    Google Scholar 

  • ———, E. Cholewa, S. Regan & B. Sundberg. 2002. Secondary xylem development in Arabidopsis: a model for wood formation. Physiologia Plantarum 114: 594–600.

    PubMed  CAS  Google Scholar 

  • Cheadle, V. I. 1943. The origin and certain trends of specialization of the vessel in the Monocotyledonae. American Journal of Botany 30: 11–17.

    Google Scholar 

  • ——— 1953. Independent origin of vessels in the monocotyledons and dicotyledons. Phytomorphology 3: 23–44.

    Google Scholar 

  • ——— 1956. Research on xylem and phloem–progress in fifty years. American Journal of Botany 43: 719–731.

    Google Scholar 

  • Chrysler, M. A. 1937. Persistent juveniles among the cycads. Botanical Gazette 98: 696–710.

    Google Scholar 

  • Clarke, L. 1893. The philosophy of flower seasons. American Naturalist 27: 769–781.

    Google Scholar 

  • Comstock, J. H. 1893. Evolution and taxonomy: an essay on the application of the theory of natural selection in the classification of animals and plants, illustrated by a study of the evolution of the wings of insects, and by a contribution to the classification of the Lepidoptera. Wilder Quarter-Century Book, Ithaca, available at http://snapper.bio.umass.edu/kunkel/comstock/essay/

  • Corner, E. J. H. 1949. The durian theory, or the origin of the modern tree. Annals of Botany 13: 368–414.

    Google Scholar 

  • Crisp, M. D. & L. G. Cook. 2005. Do early branching lineages signify ancestral traits? Trends in Ecology and Evolution 20: 122–128.

    PubMed  Google Scholar 

  • Cutler, D. F., T. Botha & D. W. Stevenson. 2007. Plant anatomy. An applied approach. Blackwell, Malden, Massachusetts.

    Google Scholar 

  • Darwin, C. 1859. On the origin of species. Harvard University Press facsimile, Cambridge.

    Google Scholar 

  • De Beer, G. 1930. Embryology and Evolution. Clarendon, Oxford.

    Google Scholar 

  • De Micco, V., G. Arvonne & P. Baas. 2008. Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees-Structure and Function 22: 643–655.

    Google Scholar 

  • de Vries, H. 1905 (Echo Library 2010 reprint). Species and varieties: their origin by mutation. Echo Library, Fairford, UK.

  • Dickison, W. C. 2000. Integrative plant anatomy. Harcourt Academic Press, New York.

    Google Scholar 

  • Donoghue, M. J. 1989. Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43: 1137–1156.

    Google Scholar 

  • Doyle, J. A. & P. K. Endress. 2000. Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. International Journal of Plant Sciences 161: S121–S153.

    CAS  Google Scholar 

  • Ehrendorfer, F. 1973. Adaptive significance of major taxonomic characters and morphological trends in angiosperms. Pp 317–327. In: V. H. Heywood (ed). Taxonomy and Ecology. Academic Press, London.

    Google Scholar 

  • Eimer, T. 1898. On orthogenesis and the impotence of natural selection in species-formation. Open Court Publishing, Chicago.

    Google Scholar 

  • Evert, R. 2006. Esau’s plant anatomy, ed. 3rd. John Wiley & Sons, Hoboken.

    Google Scholar 

  • Eyde, R. E. 1976. Durian Theory. Systematic Botany 1: 195–196.

    Google Scholar 

  • Feild, T. S., T. Brodribb & M. Holbrook. 2002. Hardly a relict: freezing and the evolution of vesselless wood in Winteraceae. Evolution 56: 464–478.

    PubMed  Google Scholar 

  • Frost, F. H. 1930a. Specialization in secondary xylem of dicotyledons I. Origin of vessel. Botanical Gazette 89: 67–94.

    Google Scholar 

  • ——— 1930b. Specialization in secondary xylem of dicotyledons II. Evolution of end wall of vessel segment. Botanical Gazette 90: 198–212.

    Google Scholar 

  • ——— 1931. Specialization in secondary xylem of dicotyledons III. Specialization of lateral wall of vessel segment. Botanical Gazette 91: 88–96.

    Google Scholar 

  • Gould, S. J. 1977. Ontogeny and phylogeny. Belknap Press, Cambridge.

    Google Scholar 

  • ——— 1989. Wonderful Life. W. W. Norton, New York.

    Google Scholar 

  • ——— 2002. The structure of evolutionary theory. Belknap Press, Cambridge.

    Google Scholar 

  • ——— & E. S. Vrba. 1982. Exaptation: a missing term in the science of form. Paleobiology 8: 4–15.

    Google Scholar 

  • Gregory, W. K. 1935. The roles of undeviating evolution and transformation in the origin of Man. The American Naturalist 69: 385–404.

    Google Scholar 

  • Griffiths, P. E. 2007. The phenomena of homology. Biology and Philosophy 22: 643–658.

    Google Scholar 

  • Hacke, U. G. & J. S. Sperry. 2001. Functional and ecological xylem anatomy. Perspectives in Plant Ecology and Evolution 4: 97–115.

    Google Scholar 

  • Hearn, D. J. 2009. Developmental patterns in anatomy are shared among separate evolutionary origins of stem succulent and storage root-bearing growth habits in Adenia (Passifloraceae). American Journal of Botany 96: 1941–1956.

    PubMed  Google Scholar 

  • Herendeen, P. S., E. A. Wheeler & P. Baas. 1999. Angiosperm wood evolution and the potential contribution of paleontological data. Botanical Review 65: 278–300.

    Google Scholar 

  • Holmes, S. J. 1944. Recapitulation and its supposed causes. Quarterly Review of Biology 19: 319–331.

    Google Scholar 

  • Horn, J. W. 2009. Phylogenetics of Dilleniaceae using sequence data from four plastid loci (rbcL, infA, rps4, rpl16 intron). International Journal of Plant Sciences 170: 794–813.

    CAS  Google Scholar 

  • Hyatt, A. 1897. Cycle in the life of the individual (ontogeny) and in the evolution of its own group (phylogeny). Science 5: 161–171.

    PubMed  CAS  Google Scholar 

  • Jacobsen, A. L., B. Pratt, F. W. Ewers & S. D. Davis. 2007. Cavitation resistance among 26 chaparral species of southern California. Ecol. Monogr. 77: 99–115.

    Google Scholar 

  • Jeffrey, E. C. 1906. Morphology and phylogeny. Science 23: 291–297.

    PubMed  CAS  Google Scholar 

  • Jeffrey, E. E. 1924. The present status of the biogenetic law. Science 60: 531–536.

    PubMed  CAS  Google Scholar 

  • Khuroo, A. A., G. H. Dar, Z. S. Khan & A. H. Malik. 2007. Exploring an inherent interface between taxonomy and biodiversity: Current problems and future challenges. Journal for Nature Conservation 15: 256–261.

    Google Scholar 

  • Krell, F.-T. & P. S. Cranston. 2004. Which side of the tree is more basal? Systematic Entomology 29: 279–281.

    Google Scholar 

  • Kribs, D. A. 1935. Salient lines of structural specialization in the wood rays of dicotyledons. Botanical Gazette 96: 547–557.

    Google Scholar 

  • ——— 1937. Salient lines of structural specialization in the wood parenchyma of dicotyledons. Bulletin of the Torrey Botanical Club 64: 177–187.

    Google Scholar 

  • Larson, A. & J. B. Losos. 1996. Phylogenetic systematics of adaptation. Pp 187–220. In: M. R. Rose & G. V. Lauder (eds). Adaptation. Academic Press, San Diego.

    Google Scholar 

  • Lens, F., M. E. Endress, P. Baas, S. Jansen & E. Smets. 2008. Wood anatomy of Rauvolfioideae (Apocynaceae): a search for meaningful non-DNA characters at the tribal level. American Journal of Botany 95: 1199–1215.

    PubMed  Google Scholar 

  • Lovejoy, A. O. 1936. The great chain of being. Harvard University Press, Cambridge.

    Google Scholar 

  • Mabberley, D. J. 1974. Branching in pachycaul Senecios: The Durian Theory and the evolution of angiospermous trees and herbs. New Phytologist 73: 967–975.

    Google Scholar 

  • ——— 1982. On Dr. Carlquist’s defence of paedomorphosis. New Phytologist 90: 751–755.

    Google Scholar 

  • Manchester, S. R. 1979. Triplochitioxylon (Sterculiaceae): A new genus of wood from the Eocene of Oregon and its bearing on xylem evolution in the extant genus Triplochiton. American Journal of Botany 66: 699–708.

    Google Scholar 

  • Mauseth, J. 1988. Plant Anatomy. Benjamin/ Cummings, Menlo Park.

    Google Scholar 

  • Mayr, E. 1982. The growth of biological thought. Belknap Press, Cambridge.

    Google Scholar 

  • McDougall, W. B. & W. T. Penfound. 1928. Ecological anatomy of some deciduous forest plants. Ecology 9: 349–353.

    Google Scholar 

  • McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48: 1747–1763.

    Google Scholar 

  • Miller, R. B. 1976. Wood anatomy and identification of species of Juglans. Botanical Gazette 137: 368–377.

    Google Scholar 

  • Niklas, K. J. 1999. Evolutionary walks through a land plant morphospace. Journal of Experimental Botany 50: 39–52.

    CAS  Google Scholar 

  • Nyffeler, R. & D. A. Baum. 2000. Phylogenetic relationships of the durians based on chloroplast and nuclear ribosomal DNA sequences. Plant Systematics and Evolution 224: 55–82.

    CAS  Google Scholar 

  • O’Hara, R. J. 1988. Homage to Clio: toward an historical philosophy for evolutionary biology. Systematic Zoology 37: 142–155.

    Google Scholar 

  • ——— 1992. Telling the tree: narrative representation and the study of evolutionary history. Biology and Philosophy 7: 135–160.

    Google Scholar 

  • Olson, M. E. 2005. Typology, homology, and homoplasy in comparative wood anatomy. IAWA Journal 26: 507–523.

    Google Scholar 

  • Olson, M. E. 2007. Wood ontogeny as a model for studying heterochrony, with an example of paedomorphosis in Moringa (Moringaceae). Systematics and Biodiversity 5: 145–158.

    Google Scholar 

  • ——— 2012. The developmental renaissance in adaptationism. Trends in Ecology and Evolution. doi:10.1016/j.tree.2011.12.005.

  • Olson, M. E. & J. Rosell. 2006. Using heterochrony to infer modularity in the evolution of stem diversity in Moringa (Moringaceae). Evolution 60: 724–734.

    Google Scholar 

  • Philipson, W. R. & J. M. Ward. 1965. The ontogeny of the vascular cambium in the stem of seed plants. Biological Reviews 40: 534–579.

    Google Scholar 

  • Poole, I. 2000. Fossil angiosperm wood: its role in the reconstruction of biodiversity and palaeoenvironment. Botanical Journal of the Linnean Society 134: 361–381.

    Google Scholar 

  • Poorter, L., I. McDonald, A. Alarcón, E. Fichtler, J.-C. Licona, M. Peña-Claros, F. Sterck, Z. Villegas & U. Sass-Klaassen. 2010. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist 185: 481–492.

    PubMed  Google Scholar 

  • Prather, L. A., O. Alvarez-Fuentes, M. H. Mayfield & C. J. Ferguson. 2004. Implications of the decline in plant collecting for systematic and floristic research. Systematic Botany 29: 216–220.

    Google Scholar 

  • Richards, R. J. 2008. The tragic sense of life: Ernst Haeckel and the struggle over evolutionary thought. University of Chicago Press, Chicago.

    Google Scholar 

  • Rieppel, O. & M. Kearney. 2002. Similarity. Biological Journal of the Linnean Society 75: 59–82.

    Google Scholar 

  • Robertson, C. 1916. The evolution of herbs. Science 44: 638.

    PubMed  CAS  Google Scholar 

  • Rock, B. N. 1972. The Woods and Flora of the Florida Keys: “Pinnatae”. Smithsonian Contributions to Botany 5: 1–35.

    Google Scholar 

  • Rosell, J. A., M. E. Olson, R. Aguirre & S. Carlquist. 2007. Logistic regression in comparative wood anatomy: tracheid types, wood anatomical terminology, and new inferences from the Carquist & Hoekman southern California dataset. Botanical Journal of the Linnean Society 154: 331–351.

    Google Scholar 

  • Ruse, M. 1996. Monad to man: the concept of progress in evolutionary biology. Harvard University Press, Cambridge.

    Google Scholar 

  • Russell, E. S. 1916. Form and Function. John Murray, London.

    Google Scholar 

  • Ruthven, A. G. 1909. A contribution to the theory of orthogenesis. American Naturalist 43: 401–409.

    Google Scholar 

  • Sano, Y., T. Ohta & S. Jansen. 2008. The distribution and structure of pits between vessels and imperforate tracheary elements. IAWA Journal 29: 1–15.

    Google Scholar 

  • Scotland, R. W. 2011. What is parallelism? Evolution and Development 13: 214–227.

    PubMed  Google Scholar 

  • Shanahan, T. 2004. The evolution of Darwinism. Cambridge University Press, Cambridge.

    Google Scholar 

  • Simões, A. O., T. Livshultz, E. Conti & M. E. Endress. 2007. Phylogeny and systematics of the Rauvolfioideae (Apocynaceae) based on molecular and morphological evidence. Annals of the Missouri Botanical Garden 94: 268–297.

  • Sinnott, E. W. 1916. The evolution of herbs. Science 44: 291–298.

    PubMed  CAS  Google Scholar 

  • Soffiatti, P. & V. Angyalossy. 2009. Increased water storage capacity in cactus wood: a study in the tribe Cereeae (Cactoideae, Cactaceae). Haseltonia 15: 27–32.

    Google Scholar 

  • Soltis, D. E., P. S. Soltis, P. K. Endress & M. W. Chase. 2005. Phylogeny and evolution of angiosperms. Sinauer, Sunderland.

    Google Scholar 

  • Stern, W. L. 1978. A retrospective view of comparative anatomy, phylogeny, and plant taxonomy. IAWA Bulletin 2(3): 33–39.

    Google Scholar 

  • Takhtajan, A. 1991. Evolutionary trends in flowering plants. Columbia University Press, New York.

    Google Scholar 

  • Thompson, W. P. 1923. The relationships of the different types of angiopsermic vessels Annals of Botany 37: 183–192.

    Google Scholar 

  • ——— & I. W. Bailey. 1916. Are Tetracentron, Trochodendron, and Drimys specialized or primitive types? Memoirs of the New York Botanical Garden 6: 27–32.

    Google Scholar 

  • Tippo, O. 1938. Comparative anatomy of the Moraceae and their presumed allies. Botanical Gazette 100: 1–99.

    Google Scholar 

  • ——— 1946. The role of wood anatomy in phylogeny. The American Midland Naturalist 36: 362–372.

    Google Scholar 

  • Tupper, W. W. & H. H. Bartlett. 1916. A comparison of the wood structure of Oenothera stenomeres and its tetraploid mutation gigas. Genetics 1: 177–184.

    PubMed  CAS  Google Scholar 

  • Van Vliet, G. J. C. M. & P. Baas. 1984. Wood anatomy and classification of the Myrtales. Annals of the Missouri Botanical Garden 71: 783–800.

    Google Scholar 

  • Wagner, G. P. 1989. The biological homology concept. Annual Review of Ecology and Systematics 20: 51–69.

    Google Scholar 

  • Wang, S. C. 2001. Quantifying passive and driven large-scale evolutionary trends. Evolution 55: 849–858.

    PubMed  CAS  Google Scholar 

  • Webber, I. E. 1936. The woods of sclerophyllus and desert shrubs of California. American Journal of Botany 23: 181–188.

    Google Scholar 

  • Wetmore, R. 1974. Irving W. Bailey. National Academy of Sciences of the United States of America Biographical Memoirs 45: 21–57.

    Google Scholar 

  • Wheeler, Q. D. 2004. Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society of London B 359: 571–583.

    Google Scholar 

  • Wheeler, E. A. & P. Baas. 1991. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bulletin n. s. 12: 275–332.

    Google Scholar 

  • Wilson, J. P. & A. H. Knoll. 2010. A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. Paleobiology 36: 335–355.

    Google Scholar 

  • Wourms, J. P. 2007. The relations between comparative embryology, morphology, and systematics: an American perspective. Pp 215–266. In: M. D. Laubichler & J. Maienschein (eds). From Embryology to Evo-Devo. A History of Developmental Evolution. MIT Press, Cambridge.

    Google Scholar 

  • Young, D. 1981. Are the angiosperms primitively vesselless? Systematic Botany 6: 313–330.

    Google Scholar 

  • Zahn, L. M., J. Leebens-Mack, C. W. DePamphilis, H. Ma & G. Thiessen. 2005. To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. Journal of Heredity 96: 225–240.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Sherwin Carlquist, Frederic Lens, Alessandro Minelli, Julieta Rosell, Erik Smets, Francisco Vergara, Kasia Ziemińska, and Calixto León for their comments. The figure from Bailey and Tupper, 1918 was taken from the Biodiversity Heritage Library; the contribution of this work by the MBLWHOI Library is much appreciated, as is permission from the University of Chicago Press to reproduce the figures of Frost and Tippo. Support from the Consejo Nacional de Ciencia y Tecnolología (project 132404), a sabbatical fellowship from the Dirección General de Asuntos del Personal Académico, UNAM, and from the Sydney Centre for the Foundations of Science is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Olson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, M.E. Linear Trends in Botanical Systematics and the Major Trends of Xylem Evolution. Bot. Rev. 78, 154–183 (2012). https://doi.org/10.1007/s12229-012-9097-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-012-9097-0

Keywords

Navigation