Folia Geobotanica

, Volume 48, Issue 1, pp 7–22 | Cite as

Species Diversity and Life-Form Patterns in Steppe Vegetation along a 3000 m Altitudinal Gradient in the Alborz Mountains, Iran

  • Parastoo Mahdavi
  • Hossein Akhani
  • Eddy Van der Maarel


Biodiversity pattern and life-form spectra were studied along a 3,000 m altitudinal gradient from a semi-desert area to the alpine peak of Tochal Mountain. The gradient is located on the southern slopes of Central Alborz with a Mediterranean continental climate. DCA ordination was applied to 1,069 relevés and 7 quantitative variables to discover the relation of diversity and altitude. A biodiversity pattern was obtained by relating values for species richness and Shannon-Wiener’s index to 100-m altitudinal sections. Altitude was determined as the major ecological gradient. Both diversity indices are negatively correlated with altitude and show a decreasing trend beyond a peak in species richness at 1,800–1,900 m a.s.l. towards a very low diversity in the high alpine zone. The biodiversity peak does not match with the potential tree line in the area (2,500–3,000 m a.s.l.). The high diversity in foothills can be related to habitat heterogeneity, longer suitable climatic conditions, and diverse disturbance factors, while unfavorable conditions at high-altitude alpine and low-altitude desert areas reduce the number of species at both extremes. Life-form patterns clearly change along altitudinal gradient. Annuals with decreasing trend, and hemicryptophytes and chamaephytes with increasing trend along the altitudinal gradient are notable patterns of life form in the area. Temperature, soil moisture and nutrients are the main factors that explain the ecological influence of altitude on species diversity and life-form patterns in the semi-arid steppe vegetation of the area.


Altitudinal gradient Biodiversity pattern Central Alborz DCA ordination Life form Steppe vegetation 

Supplementary material

12224_2012_9133_MOESM1_ESM.pdf (43 kb)
ESM 1(PDF 43 kb)


  1. Akhani H, Djamali M, Ghorbanalizadeh A, Ramezani E (2010) Plant biodiversity of Hyrcanian relict forests, N. Iran: an overview of the flora, vegetation, palaeoecology and conservation. Pakistan J Bot (S.I.) 42:231–258Google Scholar
  2. Akhani H, Mahdavi P, Noroozi J, Zarrinpour V (2013) Vegetation pattern of Irano-Turanian steppes along a 3000 m altitudinal gradient in the Alborz Moutains (Iran). Folia Geobot 48: (in press)Google Scholar
  3. Braun-Blanquet J (1964) Pflanzensoziologie: Grundzüge der Vegetationskunde. Ed. 3, Springer Verlag, WienCrossRefGoogle Scholar
  4. Buhse F (1899) Die Flora des Alburs und der kaspischen Südküste. Bisherige Forschungsergebnisse aus diesem Gebiet. Arbeiten des Naturforscher-Vereins zu Riga 8, n.F., 8 Heft, W.F. Häcker, RigaGoogle Scholar
  5. Díaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655CrossRefGoogle Scholar
  6. Djamali M, Akhani H, Koshravesh R, Andrieu-Ponel V, Ponel P, Brewer S (2011) Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography. Ecol Medit 37(1):91–114Google Scholar
  7. Emami MH, Amini B, Jamshidi Kh, Afsharyanzadeh AM (1993) Geology map of Tehran (1:100,000 scale). Geological Survey of Iran, TehranGoogle Scholar
  8. Frey W, Probst W (1986) A synopsis of the vegetation of Iran. In Kürschner H (ed) Contributions to the vegetation of Southwest Asia. Beihefte zum Tübinger Atlas des Vorderen Orients, Reihe A, Nr. 24, Dr. Ludwig Reichert, Wiesbaden, pp 9–24Google Scholar
  9. Gilli A (1939) Die Pflanzengesellschaften der Hochregion des Elbursgebirges in Nordiran. Beih Bot Centralbl 59:317–344Google Scholar
  10. Gould WA, Gonzalez G, Carrero Rivera G (2006) Structure and composition of vegetation along an elevational gradient in Puerto Rico. J Veg Sci 17:653–664CrossRefGoogle Scholar
  11. Grau O, Grytnes JA, Birks HJB (2007) A comparison of altitudinal species richness patterns of bryophytes with other plant group in Nepal, Central Himalaya. J Biogeogr 34:1907–1915CrossRefGoogle Scholar
  12. Grytnes JA (2003a) Ecological interpretation of mid-domain effect. Ecol Lett 6:883–888CrossRefGoogle Scholar
  13. Grytnes JA (2003b) Species richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26:291–300CrossRefGoogle Scholar
  14. Grytnes JA, Beaman JH (2006) Elevational species richness patterns for vascular plants on Mount Kinabalu, Borneo. J Biogeogr 33:1838–1849CrossRefGoogle Scholar
  15. Grytnes JA, Vetaas O (2002) Species richness and altitude: A comparison between Null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Amer Naturalist 159:294–304CrossRefGoogle Scholar
  16. Grytnes JA, Heegaard E, Ihlen PG (2006) Species richness of vascular plants, bryophytes and lichens along an altitudinal gradient in western Norway. Acta Oecol 29:241–246CrossRefGoogle Scholar
  17. Gutiérrez JR, López-Cortes F, Marquet PA (1998) Vegetation in an altitudinal gradient along the Río Loa in the Atacama desert of northern Chile. J Arid Environm 40:383–399CrossRefGoogle Scholar
  18. Hennekens SM, Schaminée JHJ (2001) TURBOVEG, comprehensive database management system for vegetation data. J Veg Sci 12:589–591CrossRefGoogle Scholar
  19. Hooper DU, Vitousek PM (1997) The effect of plant composition and diversity on ecosystem processes. Science 277:1302–1305CrossRefGoogle Scholar
  20. Kaboli M, Guillaumet A, Pradon R (2006) Avifaunal gradients in two arid zones of central Iran in relation to vegetation, climate and topography. J Biogeogr 27:2775–282Google Scholar
  21. Kessler M (2000) Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Pl Ecol 149:181–193CrossRefGoogle Scholar
  22. Klein JC (2001) La végétation altitudinale de Ľ Alborz Central (Iran): entre les régions irano-touranienne et euro-sibérienne. 2ème edition, revue et augmentée. Institut Français de Recherche en Iran, TéhéranGoogle Scholar
  23. Klimeš L (2003) Life forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas). Basic Appl Ecol 4:317–328CrossRefGoogle Scholar
  24. Körner Ch (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514CrossRefGoogle Scholar
  25. Körner Ch (2007) The use of altitude in ecological research. Trends Ecol Evol 22:569–574PubMedCrossRefGoogle Scholar
  26. Kotschy T (1861) Der westliche Elbrus bei Teheran. Mitt Kaiserl-Königl Geogr Ges, Wien 5:65–110Google Scholar
  27. Lomolino MV (2001) Elevation gradients of species density: historical and prospective views. Global Ecol Biogeogr 10:3–13CrossRefGoogle Scholar
  28. McCain CM (2005) Elevational gradients in diversity of small mammals. Ecology 86:366–372CrossRefGoogle Scholar
  29. McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, Version 0.4. MjM Software Design, Gleneden Beach, OregonGoogle Scholar
  30. Naqinezhad A, Jalili A, Attar F, Ghahreman A, Wheeler BD, Hodgson JG, Shaw SC, Maasoumi A (2009) Floristic characteristics of the wetland sites on dry southern slopes of the Alborz Mts., N. Iran: The role of altitude in floristic composition. Flora 204:254–269CrossRefGoogle Scholar
  31. Noroozi J, Akhani H, Breckle SW (2008) Biodiversity and phytogeography of the alpine flora of Iran. Biodivers & Conservation 17:493–521CrossRefGoogle Scholar
  32. Noroozi J, Akhani H, Willner W (2010) Phytosociological and ecological study of the high alpine vegetation of Tuchal Mountains (Central Alborz, Iran). Phytocoenologia 40:293–321CrossRefGoogle Scholar
  33. Odland A (2009) Interpretation of altitudinal gradient in south Central Norway based on vascular plants as environmental indicators. Ecol Indicators 9:409–421CrossRefGoogle Scholar
  34. Ohlemüller R, Wilson JB (2000) Vascular plant species richness along latitudinal and altitudinal gradients: a contribution from New Zealand temperate rainforests. Ecol Lett 3:262–266CrossRefGoogle Scholar
  35. Pausas JG, Austin MP (2001) Pattern of plant species richness in relation to different environments: An appraisal. J Veg Sci 12:153–166CrossRefGoogle Scholar
  36. Pavón PN, Hernández-Trejo H, Rico-Gray V (2000) Distribution of plant life forms along an altitudinal gradient in the semi-arid valley of Zapotitlán, Mexico. J Veg Sci 11:39–42CrossRefGoogle Scholar
  37. Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205CrossRefGoogle Scholar
  38. Raunkiǽr C (1934) The life forms of plants and statistical plant geography. Clarendon Press, OxfordGoogle Scholar
  39. Rechinger KH (ed) (1963–2010) Flora Iranica 1–178. Akademische Druck und Verlagsanstalt, Graz, Naturhistorisches Museum, Verlag, WienGoogle Scholar
  40. Romdal TS, Grytnes JA (2007) An indirect area effect on elevational species richness patterns. Ecography 30:440–448Google Scholar
  41. Sanders NJ (2002) Elevational gradients in ant species richness: area, geometry and Rapoport’s rule. Ecography 25:25–32CrossRefGoogle Scholar
  42. Stöklin J (1974) Northern Iran: Alborz Mountains. In Spencer AM (ed) Mesosoic-cenozoic orogenic belts. Scottish Academic Press, Edinburgh, pp 212–235.Google Scholar
  43. Van der Maarel E, Sykes MT (1993) Small-scale plant species turnover in a limestone grassland: the carousel model and some comments on the niche concept. J Veg Sci 4:179–188CrossRefGoogle Scholar
  44. Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol Biogeogr 11:291–301CrossRefGoogle Scholar
  45. Wang G, Zhou G, Yang L, Li Z (2002) Distribution, species diversity and life form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Pl Ecol 165:169–181CrossRefGoogle Scholar
  46. Wang W, Wang Q, Li S, Wang G (2006) Distribution and species diversity of plant communities along transect on the northeastern Tibetan Plateau. Biodivers & Conservation 15:1811–1828CrossRefGoogle Scholar
  47. Zobel M, Öpik M, Moora M, Pärtel M (2006) Biodiversity and ecosystem functioning: It is time for dispersal experiments. J Veg Sci 17:543–547CrossRefGoogle Scholar
  48. Zohary M (1973) Geobotanical foundations of the Middle East. Gustav Fischer Verlag, StuttgartGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2012

Authors and Affiliations

  • Parastoo Mahdavi
    • 1
  • Hossein Akhani
    • 1
  • Eddy Van der Maarel
    • 2
  1. 1.Department of Plant Sciences, School of BiologyUniversity of TehranTehranIran
  2. 2.Community and Conservation Ecology GroupUniversity of GroningenGroningenThe Netherlands

Personalised recommendations