Skip to main content

Advertisement

Log in

Response of Terrestrial-Aquatic Palm Ecotone (Morichal) to Anthropogenic Disturbance in the Orinoco Lowlands

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

The study tested the assumption that the effect of land-use changes on hydrological dynamics and edaphic features of an aquatic-terrestrial ecotone have led to vegetational patchiness and decrease primary productivity (NPP). On the basis of the depletion of a groundwater-fed stream, three study sites corresponding to interrupted, intermittent and permanent streams were selected throughout the ecotone in the Sunsunes catchment (Orinoco basin, Venezuela). To describe the human impact on land cover, patchiness, biodiversity, hydrological and edaphic features, NPP and nutrient availability, we use structural and functional approaches. Hydrological (i.e., duration of inundation and maximum inundation height), soil chemical (e.g., Ca concentration, available phosphorous, soil organic matter) and physical (i.e., water-filled pore spaces) features were the best predictors of anthropogenic disturbance. In the ecotone, the tree species invasion from well-drained savannas increased woody cover as described by a stretched exponential model. Groundwater drawdown in the interrupted and intermittent streams increased with 74 and 34 colonizer species from well-drained savannas. The NPP of the ecotonal vegetation along the interrupted stream (909 g C/m2/yr) was a higher sink as compared to the intermittent and permanent streams (580 g C/m2/yr). Anthropogenic stress along with natural disturbance resulted in a decline in the system´s functioning. In contrast to hydrology, the effect of the nutrient addition (i.e., liming and phosphorous) on the carbon accumulation by species was not significant. Therefore, the functional response of the system was more sensitive to hydrology regime. The results indicate impact on the ecotones occurred in short term, and that vulnerability to climate is crucial of groundwater-dependent vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan JD, Erickson DL, Fray J (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biol 37:149–161

    Article  Google Scholar 

  • Alva AK, Larsen S, Bille SW (1980) The influence of rhizosphere in rice crop on resin-extractable phosphate in flooded soils at various levels of phosphate application. Pl Soil 56:17–33

    Article  CAS  Google Scholar 

  • Arrowsmith N (1996) Developing criteria for wetland and vegetation management within groundwater abstraction area. In Barber G, Davia G (eds) Groundwater and land use planning conference proceeding. Centre for Groundwater Studies, CSIRO Division, Groundwater Studies, Perth, pp 126–136

    Google Scholar 

  • Bevilacqua M (1988) Cambios en la estructura fisonómica y composición florística de una comunidad de Morichal, como consecuencia de derrames de petróleo y acción del fuego (Structural changes on the physiognomy and floristic composition in a morichal community as a result of oil spill and fire). Trabajo especial de grado, licenciado en Biología, Escuela de Biología, Universidad Central de Venezuela, Caracas

  • Bohm W (1979) Methods of studying root systems. Ecological Studies, vol. 33, Springer Verlag, Berlin

  • Bostic EM, White JR (2007) Soil phosphorus and vegetation influence on wetland phosphorous release after simulated drought. Soil Sci Soc Amer J 71:238–244

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (1999) The nature and properties of soils. Ed. 12. Prentice Hall Inc., New Jersey

  • Brown CE (1998) Applied multivariate statistics in geohydrology and related sciences. Springer Verlag, Berlin

    Book  Google Scholar 

  • Burrough PA (1983) Multiscale source of spatial variation in soil. I. Application of fractal concepts to nested levels of variation. J Soil Sci 34:577–597

    Article  Google Scholar 

  • Bush DE, Smith SD (1995) Mechanisms associated with decline of woody species in riparian ecosystems of the southwestern U.S. Ecol Monogr 65:347–370

    Article  Google Scholar 

  • Bush DE, Ingraham NL, Smith SD (1992) Water uptake in woody riparian phreatophytes of the southwestern U.S. a stable isotope study. Ecol Appl 2:450–459

    Article  Google Scholar 

  • Campbell DJ, Williamson JL (1997) Evapotranspiration from a raised peat bog. J Hydrol 193:142–160

    Article  Google Scholar 

  • Cargill SM, Jefferies RL (1984) Nutrient limitation of primary production in sub-artic salt marsh. J Appl Ecol 21:657–668

    Article  Google Scholar 

  • Causton D, Venus JC (1981) The biometry of plant growth. Edward Arnold Ltd., London

    Google Scholar 

  • Clark I (1979) Practical geostatistics. Applied Science Publishers, London

    Google Scholar 

  • Clifton R, Evans C (2001) Environmental water requirements of groundwater dependent ecosystems. Environmental flows. Initiative Technical Report no. 2. Commonwealth of Australia, Canberra

  • Corstanje R, Reddy KR (2004) Response of biochemical indicators to a drawdown and subsequent reflood. J Environm Qual 33:2357–2366

    Article  CAS  Google Scholar 

  • Cox GM (1972) Laboratory manual of general ecology. Ed. 2. W.C. Brown Co., Dubuque, Iowa

  • Crins WJ (1989) The Tamaricaceae in the southeastern United States. J Arnold Arbor 70:403–425

    Google Scholar 

  • Davis RG (1971) Computer programming in quantitative biology. Academic Press, New York

    Google Scholar 

  • De Ferrari C, Naiman RJ (1994) A multiscale assessment of exotic plants on the Olympic Peninsula. Washington. J Veg Sci 5:247–258

    Google Scholar 

  • De Groot JC, van Wijck C (1993) The impact of desiccation of freshwater marsh (garines Nord, Camargue, France) on sediment-water-vegetation interactions, Part 1. Sediment chemistry. Hydrobiologia 252:83–94

    Article  Google Scholar 

  • Décamps H (1984) Towards a landscape ecology of river valleys. In Cooley JH, Golley FG (eds) Trends in ecological research for the 1980’s. Plenum, New York

    Google Scholar 

  • Décamps H, Fortuné M, Gazelle F, Pautou G (1988) Historical influence of man on the riparian dynamics of a fluvial landscape. Landscape Ecol 1:163–173

    Article  Google Scholar 

  • Dolan T, Hermann A, Bayley S, Zoltek J (1984) Evapotranspiration of a Florida, U.S.A. freshwater wetland. J Hydrol 74:355–371

    Article  Google Scholar 

  • du Toit J (2003) Large herbivores and savanna heterogeneity. In du Toit J, Biggs H, Rogers K, Sinclair A, Walker B (eds) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, Chicago, pp 292–309

    Google Scholar 

  • Duno de Stefano R, Aymard G, Huber O (eds) (2007) Catalogo anotado e ilustrado de La Flora Vascular de los Llanos de Venezuela. FUDENA/Fundación Empresas Polar/FIBV, Caracas

    Google Scholar 

  • Dynesius M, Nilsson C (1994) Fragmentation and flow regulation of river systems in the northern third of the world. Science 266:753–762

    Article  PubMed  CAS  Google Scholar 

  • Eamus D, Froend R (2006) Groundwater-dependent ecosystems: the where, what and why of GDEs. Austral J Bot 54:91–96

    Article  Google Scholar 

  • Erickson HE (1994) A gradient of productivity responses to N and P additions in beaver meadow ecotones. In Link GL, Naiman RJ (eds) The ecology and management of aquatic-terrestrial ecotone. Proceedings of the International Workshop, University of Washington, Seattle

    Google Scholar 

  • Fisher MM, Reddy KR (2001) Phosphorous flux from wetland soils affected by long-term nutrient loading. J Environm Qual 30:261–27

    Article  CAS  Google Scholar 

  • Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process. BioScience 37:550–556

    Article  Google Scholar 

  • Friedman JM, Scott ML, Auble GT (1997) Water management and cottonwood forest dynamics along prairie streams. Ecological Studies vol. 125, Springer Verlag, New York

  • Frisch U, Sornette D (1997) Extreme deviation and applications. J Phys Paris 7:1155–1171

    Google Scholar 

  • Frye RJ, Quinn JA (1979) Forest development in relation to topography and soils on a flood plain of the Raritan River, New Jersey. Bull Torrey Bot Club 106:334–345

    Article  Google Scholar 

  • González V (1987) Los Morichales de los Llanos Orientales: Un enfoque ecológico (Terrestrial-aquatic ecotone (Morichal) in the Eastern Venezuelan lowlands: an ecological approach). Ediciones Corpoven, Caracas

    Google Scholar 

  • Gremmen NJ, Reijmen MJ, Wiertz J, van Wirdum G (1990) A model to predict and assess effects of ground-water withdrawal on vegetation in the Pleistocene areas of the Netherlands. J Environm Managem 31:143–155

    Google Scholar 

  • Grier CC, Logan RS (1977) Old-growth Pseudotsuga menziesii communities of western Oregon watershed: Biomass distribution and production budgets. Ecol Monogr 47:373–400

    Article  Google Scholar 

  • Hedberg H, Pyre A (1944) Stratigraphy of northern Anzoategui, Venezuela. Bull Amer Assoc Petrol Geol 28:1–28

    Google Scholar 

  • Hedges JJ, Clark WA, Quay PD, Richey JE, Devol AH, Urbento SM (1986) Compositions and fluxes of particulates organic material in the Amazon River. Limnol Oceanogr 31:717–730

    Article  CAS  Google Scholar 

  • Heinen HD, San José JJ, Caballero H, Montes RA (1995) Subsistence activities of the Warao Indians and anthropogenic changes in the Orinoco Delta vegetation. Sci Guaianae 5:312–334

    Google Scholar 

  • Hook DD, Debell DS, McKee WH Jr, Askew JL (1983) Responses of loblolly pine (Mesophyte) and swamp tupelo (Hydrophyte) seedling to soil flooding and phosphorous. Pl Soil 71:383–394

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (2001) Climate change 2001: The scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Humphrey WD, Pluth DJ (1996) Net nitrogen mineralization in natural and drained fen petlands in Alberta, Canada. Soil Sci Soc Amer J 60:932–940

    Article  CAS  Google Scholar 

  • IPCC (Intergovermental Panel on Climate Change) (2008) Climate change 2007. In: Pachauri RK, Reisinger A (the core writing team) Synthesis report. Intergovernmental Panel on Climate Change, Geneva, Switzerland

    Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prentice Hall, New York

    Google Scholar 

  • Janssen PH, Heuberger PSC (1995) Calibration of process-oriented models. Ecol Modelling 83:55–86

    Article  Google Scholar 

  • Knopoff L, Sornette D (1995) Earthquake death tolls. J Phys I Paris 6:1668–1681

    Google Scholar 

  • Kozlowski TT (1984) Flooding and plant growth. Physiological Ecology Series, Academic Press, London

    Google Scholar 

  • Kromm DE, White SE (1992) Groundwater problems. In Kromm DE, White SE (eds) Groundwater exploitation in the high plains. University of Kansas Press, Lawrence

    Google Scholar 

  • Kusler J (2003) Final Report 3: Wetland assessment for regulatory purposes – integrating wetland assessment into regulatory permiting; recommendations and a proposed process. Institute for Wetland Science and Public Policy, The Association of State Wetland Managers Inc., New York

  • Laherrère JH, Sornette D (1998) Stretched exponential distributions in nature and economy: “fat tails” with characteristics scales. European Physical Journal B 2:525–539

    Article  Google Scholar 

  • Laiho R, Vasander H, Penttila T, Laine J (2003) Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Global Biogeochem Cycles 17:1053

    Article  Google Scholar 

  • Laine J, Vasander H, Laiho R (1995) Long-term, effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802

    Article  Google Scholar 

  • Lamprecht H (1962) Ensayo sobre unos métodos para el análisis estructural de los bosques tropicales. Acta Ci Venez 13:57–65

    Google Scholar 

  • Lamprecht H, Veillon JP (1957) La Carbonera. El Farol 168:17–24

    Google Scholar 

  • Layher B (1986) The four deadly sins. Kansas Wildlife 43:32–35

    Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research 35:233–241

    Article  Google Scholar 

  • Long SP, Jones MB, Roberts MJ (1992) Primary production of grass ecosystems of the tropics and subtropics. Chapman & Hall, London

    Google Scholar 

  • Luckey RR, Gutentag ED, Heimes FJ, Weaks JB (1988) Effects of future groundwater pumpage on the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas and Wyoming. Professional Paper 1400-E, US Geological Survey, Washington DC

  • Maron M, Lill A (2005) The influence of livestock grazing and weed invasion on habitat use by birds in grassy woodland remmnants. Biol Conservation 124:439–450

    Article  Google Scholar 

  • McKell CM, Wilson AM, Jones MB (1961) A flotation methods for easy separation of roots from soil samples. J Agron 53:56–57

    Article  Google Scholar 

  • McLean EO (1965) Aluminum. In Black C (ed) Methods of soil analysis. American Society of Agronomy, Madison, Wisconsin, pp 978–998

    Google Scholar 

  • Montes R, San José JJ (1995) Vegetation and soil analysis of topo-sequences in the Orinoco Llanos. Flora 190:1–33

    Google Scholar 

  • Montgomery DC, Peck EA (1982) Introduction to linear regression analysis. Wiley & Sons, New York

    Google Scholar 

  • Mountford JO, Chapman JM (1993) Water regime requirements of British wetland vegetation: using the moisture classifications of Ellemberg and Londo. J Environm Managem 38:275–288

    Google Scholar 

  • Naiman RJ, Decamps H, McClain ME (2005) Riparia. Ecology, conservation, and management of streamside communities. Elsevier Academic Press, Amsterdam

  • Olsen SR, Dean LA (1965) Phosphorous. In Black C (ed) Methods of soil analysis. American Society of Agronomy, Madison, Wisconsin, pp 1035–1048

    Google Scholar 

  • Pareto V (1897) Cours d’economic poilitique. Reprinted as volume of Oeuvres Completes. Librairie Droz, Geneva

    Google Scholar 

  • Pautou G, Décamps H (1985) Ecological interactions between the alluvial forests and hydrology of the open Rhone. Arch Hydrobiol 104:13–37

    Google Scholar 

  • Penka M, Vyskot M, Klimo E, Vasicek F (1991) Floodplain forest ecosystem. II. After water management measures. Elsevier, Amsterdam

    Google Scholar 

  • Perkins DJ, Carlsen BN, Fredstrom M, Miller RH, Rofer CM, Ruggerone GT, Zimmerman CS (1984) The effects of groundwater pumping on natural spring communities in Owen Valley. In Warner RE, Hendrix KM (eds) California riparian systems; ecology, conservation and productive management. University of California Press, Berkeley, pp 515–527

    Google Scholar 

  • Peterjohn WT, Correll DL (1984) Nutrient dynamics in agricultural watershed: Oberservations on the role of the riparian forest. Ecology 65:1466–1475

    Article  CAS  Google Scholar 

  • Pinay G, Decamps H, Chauvet E, Fustec E (1990) Functions of ecotones in fluvial systems. In Naiman RJ, Decamps H (eds) The ecology and management of aquatic-terrestrial ecotones. Man and Biosphere Series 4, The Parthenon Publishing Group, Carnforth, pp 141–169

  • Pla Sentis I (1977) Metodología para caracterización física con fines de diagnostico de problemas de manejo y conservación de suelo en condiciones tropicales (Methodology for soil physical characterization toward assessment of management and conservation problems in tropical conditions). Curso de Post-grado en Ciencias del Suelo, Facultad de Agronomía, Universidad Central Venezuela, Maracay

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Advances Agron 24:29–96

    Article  CAS  Google Scholar 

  • Popov OF (1985) Certain principles of the regime and balance of ground water in forest and marsh landscapes of the right bank of the Pripyet River. Soviet Meteorol Hydrol 11:70–77

    Google Scholar 

  • Postel SL (2000) Entering an era of water scarcity: The challenges ahead. Ecol Applic 10:941–948

    Article  Google Scholar 

  • Pyšek P, Prach K (1994) How important are rivers for supporting plant invasion? In de Waal LC, Child LE, Wade PM, Brock JH (eds) Ecology management of invasive riverside plants. John Wiley & Sons, Chichester, pp 19–26

    Google Scholar 

  • Revenga C, Brunner J, Henninger N, Kassem K, Payne R (2000) Pilot analysis of global ecosystems (PAGE): freshwater systems. World Resources Institute, Washington

    Google Scholar 

  • Richards LA (1949) Methods of measuring soil moisture tension. Soil Sci 68:95–112

    Article  Google Scholar 

  • Rood SB, Mahoney JM, Reid DE, Zilm L (1995) Instream flows and the decline of riparian cottonwoods along the St. Mary River, Alberta. Canad J Bot 73:1250–1260

    Article  Google Scholar 

  • Rood SB, Kalischuk AR, Mahoney JM (1998) Initial cottonwood seedling recruitment following the flood of the century of the Oldman River, Alberta, Canada. Wetlands 18:557–570

    Article  Google Scholar 

  • Rood SB, Braatne JH, Huges FMR (2003) Ecophysiology of riparian cottonwoods: Stream flow dependency, water relations and restoration. Tree Physiol 23:1113–1124

    Article  PubMed  Google Scholar 

  • Rull V (1999) A palynogical record of a secondary succession alter fire in the Gran Sabana, Venezuela. J Quaternary Sci 14:137–152

    Article  Google Scholar 

  • Runeckles VC (1982) Relative death rate: a dynamic parameter describing plant response to stress. J Appl Ecol 19:295–303

    Article  Google Scholar 

  • San José JJ, Montes R (2007) Resource apportionment and net primary production across the Orinoco savanna-woodland continuum, Venezuela. Acta Oecol 32:243–253

    Article  Google Scholar 

  • San José JJ, Berrade F, Ramirez F (1982) Seasonal changes of growth, mortality and disappearance of belowground root biomass in the Trachypogon savanna. Acta Oecol Plantar 3:347–358

    Google Scholar 

  • San José JJ, Montes RA, Mazorra M (1998) The nature of savanna heterogeneity in the Orinoco basin. Global Ecol Biogeogr Lett 7:441–455

    Article  Google Scholar 

  • San José JJ, Meirelles ML, Bracho R, Nikonova N (2001) A comparative analysis of the flooding and fire effects in the energy exchange in a wetland community (Morichal) of the Orinoco llanos. J Hydrol 242:228–254

    Article  Google Scholar 

  • San José JJ, Montes R, Mazorra MA, Aguirre E, Matute N (2010a) Patterns and carbon accumulation in the inland water-land palm ecotone (Morichal) across the Orinoco lowlands, South America. Pl Ecol 206:361–374

    Article  Google Scholar 

  • San José JJ, Montes R, Mazorra MA, Matute N (2010b) Heterogeneity of the inland water–land palm ecotones (morichals) in the Orinoco lowlands, South America. Pl Ecol 208:259–269

    Article  Google Scholar 

  • Shafroth PB, Stromberg JC, Patten DT (2000) Responses of riparian vegetation to different alluvial ground water regimes. W N Amer Naturalist 60:66–76

    Google Scholar 

  • Snedecor GW, Cochran WC (1967) Statistical methods. Ed. 6. Iowa State University Press, Iowa

  • Soil Survey Staff (1975) Soil Taxonomy. A basic system of soil classification for making and interpreting Soil Survey, USDA. Agric. Hand b. 436, U.S. Government Printing Office, Washington

  • Sokal R, Rohlf R (1998) Biometry. Ed. 2. Freeman, New York

  • Sorensen T (1948) A method of establishing gropus of equal amplitude in plant society based on similarity of species content. K Danske Vidensk Selsk 5:1–34

    Google Scholar 

  • Sornette D, Johansen A, Bouchaud JP (1996) Stock market crashes, precursors and replicas. J Phys I Paris 6:167–175

    Google Scholar 

  • Souch C, Grimmond CS, Wolfe PC (1998) Evapotranspiration rates from wetlands with different disturbance histories: Indiana dunes National Lakeshore. Wetlands 18:216–229

    Article  Google Scholar 

  • Strayer DL, Beighley RE, Thompson LC, Brooks S, Nilsson C, Pinay G, Naiman RJ (2003) Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems 6:407–423

    Article  Google Scholar 

  • Stromberg JC (1993) Freemont cottonwood-Goodding willow riparian forests: a review of their ecology, threats and recovery potential. J Arizona-Nevada Acad Sci 27:97–110

    Google Scholar 

  • Stromberg JC, Patten DT (1992) Mortality and age of black cottonwood stand along diverted and undiverted streams in the eastern Sierra Nevada, California. Madroño 39:205–223.

    Google Scholar 

  • Stromberg JC, Tiller R, Richter B (1996) Effects of groundwater decline on riparian vegetation of semiarid regions: The San Pedro, Arizona. Ecol Appl 6:113–131

    Article  Google Scholar 

  • Suso J, Llamas MR (1993) Influence of ground water development on the Doñana National Park ecosystems. J Hydrol 141:239–269

    Article  Google Scholar 

  • Thielen DR, San José JJ, Montes RA, Lairet R (2008) Assessment of land use changes on woody cover and landscape fragmentation in the Orinoco savannas using fractal distributions. Ecol Indicators 8:224–2338

    Article  Google Scholar 

  • Townsend CR, Doledec S, Norris R, Peacock K, Arbuckle C (2003) The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freswater Biol 48:768–785

    Article  Google Scholar 

  • Trémolères M, Sanchez-Peres JM, Schnitzler A, Schmit D (1998) Impact of river management history on the community structure, species composition and nutrient status in the Rhine alluvial hardwood forest. Pl Ecol 135:59–78

    Article  Google Scholar 

  • Van den Brink FW, van der Velde A, Buijse AD, Klink AG (1996) Biodiveristy in the lower Rhine and Meuse river-flood plains: Its significance for ecological management. Netherlands J Aquatic Ecol 30:12–149

    Google Scholar 

  • Walkley AA (1949) A critical examination of a rapid method for determining organic carbon in soils. Effects of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–261

    Article  Google Scholar 

  • White DR (2003) Social scaling: From scale-free to streched exponential models for scalar stress, hierarchy, levels and units in human and technological nerworks and evolution. ISCOM working paper. Available at: http://eclectic.ss.uci.edu/~drwhite/pub/1982scalingDRW.pdf

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Amer Meteorol Soc 63:1309–1313

    Article  Google Scholar 

  • Yibing Q, Chongshun L (1994) The effects of the development of river basins in Xanjiang on desert environments and the measures to prevent and control desertification. Chinese J Arid Land Res 7:207–210

    Google Scholar 

  • Yu Q, Gong P, Clinton N, Biging G, Kelly M, Schirokauer D (2006) Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering Remote Sensing S 72:799–811

    Google Scholar 

  • Yuan TL (1959) Determination of exchangeable hydrogen in soils by titration method. Soil Sci 88:164–167

    Article  CAS  Google Scholar 

  • Yuan TL, Fiskell JG (1959) Aluminum studies. I. Soil and plant analysis of aluminum by modification of the aluminum method. J Agric Food Chem 7:115–117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been conducted within the Savanna Bioproductivity (MAB/UNESCO) project of IVIC. It was partially sponsored by the Decanato de Investigaciones Biológicas (Universidad Simón Bolívar). The identification of the botanical material was made or revised by Drs. Gerrit Davidse and Ronald Lisner from Missouri Botanical Garden. We thank the Associate Editor, Copy Editor (Dr. Petr Dostál) and reviewers for constructive comments and suggestions, which have led to considerable improvement in the contents and presentation. We appreciate the skillfull technical assistance of Professor Daniel Bailey (Universidad Simón Bolivar), as well as that of N. Nikonova, N. Matute and M. Moreno from the Ecological Center at IVIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José San-José.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 218 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

San-José, J., Montes, R., Buendía, C. et al. Response of Terrestrial-Aquatic Palm Ecotone (Morichal) to Anthropogenic Disturbance in the Orinoco Lowlands. Folia Geobot 47, 153–178 (2012). https://doi.org/10.1007/s12224-011-9115-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-011-9115-8

Keywords

Navigation