Skip to main content

Advertisement

Log in

The combinatorial applications of 1,4-naphthoquinone and tryptophan inhibit the biofilm formation of Staphylococcus aureus

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Microorganisms embedded within an extracellular polymeric matrix are known as biofilm. The extensive use of antibiotics to overcome the biofilm-linked challenges has led to the emergence of multidrug-resistant strains. Staphylococcus aureus is one such nosocomial pathogen that is known to cause biofilm-linked infections. Thus, novel strategies have been adopted in this study to inhibit the biofilm formation of S. aureus. Two natural compounds, namely, 1,4-naphthoquinone (a quinone derivative) and tryptophan (aromatic amino acid), have been chosen as they could independently show efficient antibiofilm activity. To enhance the antibiofilm potential, the two compounds were combined and tested against the same organism. Several experiments like crystal violet (CV) assay, protein estimation, extracellular polymeric substance (EPS) extraction, and estimation of metabolic activity confirmed that the combination of the two compounds could significantly inhibit the biofilm formation of S. aureus. To comprehend the underlying mechanism, efforts were further directed to understand whether the two compounds could inhibit biofilm formation by compromising the cell surface hydrophobicity of the bacteria. The results revealed that the cell surface hydrophobicity got reduced by ~ 49% when the compounds were applied together. Thus, the combinations could show enhanced antibiofilm activity by attenuating cell surface hydrophobicity. Further studies revealed that the selected concentrations of the compounds could disintegrate (~ 70%) the pre-existing biofilm of the test bacteria without showing any antimicrobial activity. Hence, the combined application of tryptophan and 1,4-naphthoquinone could be used to inhibit the biofilm threats of S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The datasets produced during the present study are available from the corresponding author based on the logical request.

Code availability

Minitab 19 (trial version) was used to analyze the statistical observations.

References

  • Abreu AC, Saavedra MJ, Simões LC, Simões M (2016) Combinatorial approaches with selected phytochemicals to increase antibiotic efficacy against Staphylococcus aureus biofilms. Biofouling 32:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soc Sci Med 33:943–951

    CAS  Google Scholar 

  • Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic Press, London 1–576

  • Azmi K, Qrei W, Abdeen Z (2019) Screening of genes encoding adhesion factors and biofilm production in methicillin resistant strains of Staphylococcus aureus isolated from Palestinian patients. BMC Genom 20:1–12

    Article  CAS  Google Scholar 

  • Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP, Bumann D, Camilli A, Collins JJ, Dehio C (2019) Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol 17:441–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58

    Article  Google Scholar 

  • Chakraborty P, Dastidar DG, Paul P, Dutta S, Basu D, Sharma SR, Basu S, Sarker RK, Sen A, Sarkar A, Tribedi P (2020) Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine: a potential approach for sustainable management of biofilm. Arch Microbiol 202:623–635

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Paul P, Kumari M, Bhattacharjee S, Singh M, Maiti D, Dastidar DG, Akhter Y, Kundu T, Das A, Tribedi P (2021) Attenuation of Pseudomonas aeruginosa biofilm by thymoquinone: an individual and combinatorial study with tetrazine-capped silver nanoparticles and tryptophan. Folia Microbiol 66:255–271

    Article  CAS  Google Scholar 

  • Chen X, Stewart PS (2000) Biofilm removal caused by chemical treatments. Water Res 34:4229–4233

    Article  CAS  Google Scholar 

  • Das T, Sehar S, Manefield M (2013) The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep 5:778–786

    Article  CAS  PubMed  Google Scholar 

  • Das MC, Sandhu P, Gupta P, Rudrapaul P, De UC, Tribedi P, Akhter Y, Bhattacharjee S (2016) Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: a combinatorial study with azithromycin and gentamicin. Sci Rep 6:23347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Martino P (2018) Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol 4:274–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells.” J Bacteriol 189:7945–7947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB (2019) Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 5:e02192

    Article  PubMed  PubMed Central  Google Scholar 

  • Granato ET, Ziegenhain C, Marvig RL, Kümmerli R (2018) Low spatial structure and selection against secreted virulence factors attenuates pathogenicity in Pseudomonas aeruginosa. ISME J 12:2907–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P (2016) Biofilm, pathogenesis and prevention-a journey to break the wall: a review. Arch Microbiol 198:1–15

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Sarkar A, Sandhu P, Daware A, Das MC, Akhter Y, Bhattacharjee S (2017) Potentiation of antibiotic against Pseudomonas aeruginosa biofilm: a study with plumbagin and gentamicin. J Appl Microbiol 123:246

    Article  CAS  PubMed  Google Scholar 

  • Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A (2007) Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol 52:1048–1056

    Article  CAS  PubMed  Google Scholar 

  • Ibis C, Tuyun AF, Ozsoy-Gunes Z, Bahar H, Stasevych MV, Musyanovych RY, Komarovska-Porokhnyavets O, Novikov V (2011) Synthesis and biological evaluation of novel nitrogen- and sulfur-containing hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. Eur J Med Chem 46:5861–5867

    Article  CAS  PubMed  Google Scholar 

  • Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroukamp O, Dumitrache RG, Wolfaardt GM (2010) Pronounced effect of the nature of the inoculum on biofilm development in flow systems. Appl Environ Microbiol 76:6025–6031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiedrowski MR, Horswill AR (2011) New approaches for treating Staphylococcal biofilm infections. Ann NY Acad Sci 1241:104–121

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Martínez MJA, Benito PB (2005) Biological activity of quinones. Stud Nat Prod Chem 30:303–366

    Article  Google Scholar 

  • Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J (2020) Natural antibiofilm agents: strategies to control biofilm-forming pathogens. Front Microbiol 11:566325

    Article  PubMed  PubMed Central  Google Scholar 

  • Moormeier DE, Bayles KW (2017) Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 104:365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee K, Tribedi P, Mukhopadhyay B, Sil AK (2013) Antibacterial activity of long-chain fatty alcohols against Mycobacteria. FEMS Microbiol Lett 338:177–183

    Article  CAS  PubMed  Google Scholar 

  • Mallavadhani UV, Prasad CV, Shrivastava S, Naidu VG (2014) Synthesis and anticancer activity of some novel 5, 6-fused hybrids of juglone based 1,4-naphthoquinones. Eur J Med Chem 83:84–91

    Article  CAS  PubMed  Google Scholar 

  • Okshevsky M, Meyer RL (2015) The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol 41:341–352

    Article  CAS  PubMed  Google Scholar 

  • Pachori P, Gothalwal R, Gandhi P (2019) Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis 6:109–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Paharik AE, Horswill AR (2016) The Staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr 4:529–566

    Article  Google Scholar 

  • Paul P, Chakraborty P, Chatterjee A, Sarker RK, Dastidar DG, Kundu T, Sarkar N, Das A, Tribedi P (2021a) 1,4-Naphthoquinone accumulates reactive oxygen species in Staphylococcus aureus: a promising approach towards effective management of biofilm threat. Arch Microbiol 203:1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Paul P, Das S, Chatterjee S, Shukla A, Chakraborty P, Sarkar S, Maiti D, Das A, Tribedi P (2021b) 1, 4-Naphthoquinone disintegrates the pre-existing biofilm of Staphylococcus aureus by accumulating reactive oxygen species. Arch Microbiol 203:4981–4992

    Article  CAS  PubMed  Google Scholar 

  • Pompilio A, Piccolomini R, Picciani C, D’Antonio D, Savini V, Di Bonaventura G (2008) Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: the role of cell surface hydrophobicity and motility. FEMS Microbiol Lett 287:41–47

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M, Perry A, Bayer EA, Gutnick DL, Rosenberg E, Ofek I (1981) Adherence of Acinetobacter calcoaceticus RAG-1 to human epithelial cells and to hexadecane. Infect Immun 33:29–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker RK, Chakraborty P, Paul P, Chatterjee A, Tribedi P (2020) Degradation of low-density poly ethylene (LDPE) by Enterobacter cloacae AKS7: a potential step towards sustainable environmental remediation. Arch Microbiol 202:2117–2125

    Article  CAS  PubMed  Google Scholar 

  • Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R (2014) Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals 42:1–7

    Article  CAS  PubMed  Google Scholar 

  • Sahu PK, Iyer PS, Oak AM, Pardesi KR, Chopade BA (2012) Characterization of eDNA from the clinical strain Acinetobacter baumannii AIIMS 7 and its role in biofilm formation. Sci World J 2012:1–10

    Article  Google Scholar 

  • Tribedi P, Sil AK (2014) Cell surface hydrophobicity: a key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2. J Appl Microbiol 116:295–303

    Article  CAS  PubMed  Google Scholar 

  • Tribedi P, Gupta AD, Sil AK (2015) Adaptation of Pseudomonas sp. AKS2 in biofilm on low-density polyethylene surface: an effective strategy for efficient survival and polymer degradation. Bioresour Bioprocess 2:1–10

    Article  Google Scholar 

  • Tandon VK, Maurya HK, Yadav DB, Tripathi A, Kumar M, Shukla PK (2006) Naphtho [2,3-b][1,4]-thiazine-5,10-diones and 3-substituted-1,4-dioxo-1,4-dihydronaphthalen-2-yl-thioalkanoate derivatives: synthesis and biological evaluation as potential antibacterial and antifungal agents. Bioorg Med Chem Lett 16:5883–5887

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Cheng CWT, Zhang Q (2022) 1, 4-Naphthoquinone Analogs and Their Application as Antibacterial Agents. Chemistry Select 7:e202203330

    CAS  Google Scholar 

  • Xu Z, Liang Y, Lin S, Chen D, Li B, Li L, Deng Y (2016) Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification. Curr Microbiol 73:474–482

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Kong Y, Kundu S, Liang CJD, H, (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and Bacillus Calmette-Guerin. J Nano Biotechnol 10:1–9

    CAS  Google Scholar 

  • Zhou JW, Hou B, Liu GY, Jiang H, Sun B, Wang ZN, Shi RF, Xu Y, Wang R, Jia AQ (2018) Attenuation of Pseudomonas aeruginosa biofilm by hordenine: a combinatorial study with aminoglycoside antibiotics. Appl Microbiol Biotechnol 102:9745–9758

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere regards to Dr. Amlan Das (Research and Development Project Manager, National Institute of Biomedical Genomics, Kalyani, WB India), for sharing 1,4-naphthoquinone with us to perform the required research work. The authors would also express their sincere thanks to Dr. Anirban Das Gupta (Assistant Professor, Department of Biotechnology, The Neotia University) for correcting the language of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PP, RR, SD, SS, SC, MM, AS, and PC performed the experiments, analyzed the results, and wrote the manuscript. PT conceived the idea, designed the experiments, analyzed the results, and rearranged the manuscript.

Corresponding author

Correspondence to Prosun Tribedi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, P., Roy, R., Das, S. et al. The combinatorial applications of 1,4-naphthoquinone and tryptophan inhibit the biofilm formation of Staphylococcus aureus. Folia Microbiol 68, 801–811 (2023). https://doi.org/10.1007/s12223-023-01054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-023-01054-y

Keywords

Navigation