Skip to main content
Log in

Biodegradation of diethyl phthalate and phthalic acid by a new indigenous Pseudomonas putida

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Diethyl phthalate (DEP) is one of the extensively used plasticizers which has been considered a priority hazardous pollutant due to its carcinogenic, endocrine disrupter, and multi-toxic effects on humans. The identification of DEP in different parts of the ecosphere has increased the global community’s attention to the elimination of this pollutant in a bio-eco-friendly way. In this research, a novel aerobic bacterial strain nominates as ShA (GenBank accession number: MN298858) capable of consuming DEP as carbon and energy sources, was isolated from the upper phase (0–10 cm) of Anzali international wetland sediments by enrichment culture method. Morphological characteristics and 16S rRNA gene sequence analysis demonstrated that strain ShA belonged to Pseudomonas putida. The substrate utilization test demonstrated that strain ShA was able to grow in mineral salt medium containing dimethyl phthalate (DMP) and phthalic acid (PA) isomers including terephthalic and isophthalic acid. Degradation assay showed strain ShA completely degraded 200 mg/L DEP within 22 h (pH 7.0, 30 °C). Surprisingly, PA as the main intermediate of DEP biodegradation was identified by GC-FID. Moreover, the rapid degradation of 2000 mg/L PA to CO2 and H2O was viewed in 22 h by strain ShA. The possible route of DEP degradation was DEP directly to PA and then PA consumption for growth. This study obtained results that provide a great contribution to applying strain ShA in the biodegradation of low molecular weight of PAEs and PA isomers in natural ecosystems. This is the first report of a P. putida strain able to degrade DEP and PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahuactzin-Pérez M, Tlecuitl-Beristain S, García-Dávila J, Santacruz-Juárez E, González-Pérez M, Gutiérrez-Ruíz MC, Sánchez CA (2018) Novel biodegradation pathway of the endocrine-disruptor di (2-ethyl hexyl) phthalate by Pleurotus ostreatus based on quantum chemical investigation. Ecotoxicol Environ Saf 147:494–499

    Article  PubMed  Google Scholar 

  • Ammeri RW, Hidri Y, Hassen W, Mehri I, Khlifi N, Hassen A (2021) Surfactant efficiency on pentachlorophenol-contaminated wastewater enhanced by Pseudomonas putida AJ 785569. Arch Microbiol 203:5141–5152. https://doi.org/10.1007/s00203-021-02486-1

    Article  CAS  PubMed  Google Scholar 

  • Andersen C, Krais AM, Eriksson AC, Jakobsson J, Löndahl J, Nielsen J, Lindh CH, Pagels J, Gudmundsson A, Wierzbicka A (2018) Inhalation and Dermal Uptake of Particle and Gas-Phase Phthalates-A Human Exposure Study. Environ Sci Technol 52(21):12792–12800

    Article  CAS  PubMed  Google Scholar 

  • Barrett J, Chase Z, Zhang J, Holl MMB, Willis K, Williams A, Hardesty BD, Wilcox C (2020) Micro plastic pollution in deep-sea sediments from the great Australian bight. Front Mar Sci 7(808):1–10

    CAS  Google Scholar 

  • Boll M, Geiger R, Junghare M, Schink B (2020) Microbial degradation of phthalates: biochemistry and environmental implications. Environ Microbiol Rep 12(1):3–15

    Article  CAS  PubMed  Google Scholar 

  • Braun JM, Sathyanarayana S, Hauser R (2013) Phthalate exposure and children’s health. Curr Opin Pediatr 25:247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buser MC, Murray HE, Scinicariello F (2014) Age and sex differences in childhood and adulthood obesity association with phthalates: Analyses of NHANES 2007–2010. Int J Hyg Environ Health 217:687–694

    Article  PubMed  PubMed Central  Google Scholar 

  • Carstens L, Cowan AR, Seiwert B, Schlosser D (2020) Biotransformation of Phthalate Plasticizers and Bisphenol A by Marine-Derived, Freshwater, and Terrestrial Fungi. Front Microbiol 11:317

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang WH, Wu MH, AnPan H, Guo LG, Lee CC (2017) Semen quality and insulin-like factor 3: Associations with urinary and seminal levels of phthalate metabolites in adult males. Chemosphere 173:594–602

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Dutta TK (2003) Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem Biophys Res Commun 309:36–43

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Shuai W, Hao X, Zhang H, Zhou D, Gao J (2017) Contamination of Phthalate Esters in Vegetable Agriculture and Human Cumulative Risk Assessment. Pedosphere 27(3):439–451

    Article  CAS  Google Scholar 

  • Chen X, Zhang X, Yang Y, Yue D, Xiao L, Yang L (2015) Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Camelimonas sp. and enzymatic properties of its hydrolase. Biodegradation 26:171–182

    Article  CAS  PubMed  Google Scholar 

  • Costa-Gutierrez SB, Lami MJ, Santo MCCD et al (2020) Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA. Appl Microbiol Biotechnol 104:4577–4592. https://doi.org/10.1007/s00253-020-10516-z

    Article  CAS  PubMed  Google Scholar 

  • Demirtaş G, Çavuşoğlu K, Yalçin E (2020) Aneugenic, clastogenic, and multi-toxic effects of diethyl phthalate exposure. Environ Sci Pollut R 27:5503–5510

    Article  Google Scholar 

  • Dutta K, Shityakov S, Das PP, Ghosh C (2017) Enhanced biodegradation of mixed PAHs by mutated naphthalene 1,2-dioxygenase encoded by Pseudomonas putida strain KD6 isolated from petroleum refinery waste. 3 Biotech 7(6):365

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebenau-Jehle C, Mergelsberg M, Fischer S, Brüls T, Jehmlich N, Bergen M, Boll M (2017) An unusual strategy for the anoxic biodegradation of phthalate. ISME J 11:224–236

  • Edison TE, Cruz D, Martin J, Torres O (2012) Gelatin hydrolysis test protocol. Am Soc Microbiol

  • Eltoukhy A, Jia Y, Nahurira R, Abo-Kadoum MA, Khokhar I, Wang J, Yan Y (2020) Biodegradation of endocrine disruptor Bisphenol A by Pseudomonas putida strain YC-AE1 isolated from polluted soil, Guangdong, China. BMC Microbiol 20(11):1–14

    Google Scholar 

  • Fan JC, Ren R, Jin Q, He HL, Wang ST (2019) Detection of 20 phthalate esters in breast milk by GC-MS/MS using QuEChERS extraction method. Food Addit Contam A 36(10):1551–1558

    Article  CAS  Google Scholar 

  • Fang HHP, Liang D, Zhang T (2007) Aerobic degradation of diethyl phthalate by Sphingomonas sp. Bioresour Technol 98(3):717–720

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Cui K, Li X, Fu J, Sheng G (2004) Biodegradation kinetics of phthalateesters by Pseudomonas fluoresences FS1. Process Biochem 39:1125–1129

    Article  Google Scholar 

  • Gao DW, Wen DZ (2016) Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci Total Environ 541:986–1001

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Kannan K (2013) A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environ Sci Technol 47:14442–14449

    Article  CAS  PubMed  Google Scholar 

  • Hassanzadeh N, Esmaili Sari A, Khodabandeh S, Bahramifar N (2014) Occurrence and distribution of two phthalate esters in the sediments of the Anzali wetlands on the coast of the Caspian Sea (Iran). Mar Poll Bull 89:128–135

    Article  CAS  Google Scholar 

  • Hatch E, Nelson J, Qureshi M (2008) Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: A crosssectional study of NHANES data 1999–2002. Environ Health 15:1–15

    Google Scholar 

  • Hu R, Zhao H, Xu X, Wang Z, Yu K, Shu L, Yan Q, Wu B, Mo C, He Z, Wang C (2021) Bacteria-driven phthalic acid ester biodegradation: Current status and emerging opportunities. Environ Int 154(106560):1–14

    Google Scholar 

  • Hu X, Gu Y, Huang W, Yin D (2016) Phthalate monoesters as markers of phthalate contamination in wild marine organisms. Environ Pollut 218:410–418

    Article  CAS  PubMed  Google Scholar 

  • Huang YW, Ren WJ, Liu HR, Wang HM, Xu YF, Han YJ, Teng Y (2021) Contrasting impacts of drying-rewetting cycles on the dissipation of di-(2-ethylhexyl) phthalate in two typical agricultural soils. Sci Total Environ 792:148433

    Article  CAS  PubMed  Google Scholar 

  • Jamshidi S, Bastami KD (2016) Metal contamination and its ecological risk assessment in the surface sediments of Anzali wetland, Caspian Sea. Mar Pollut Bull 113:559–565

    Article  CAS  PubMed  Google Scholar 

  • Jin D, Kong X, Li Y, Bai Z, Zhuang G, Zhuang X, Deng Y (2015) Biodegradation of di-n-butyl phthalate by Achromobacter sp. isolated from rural domestic wastewater. Int J Environ Res Public Health 12:13510–13522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin DC, Bai ZH, Chang DD, Hoefel D, Jin B, Wang P (2012) Biodegradation of din-butyl phthalate by an isolated Gordonia sp. strain QH-11: genetic identification and degradation kinetics. J Hazard Mater 221:80–85

    Article  PubMed  Google Scholar 

  • Kai S, Matsuo Y, Nakagawa S, Kryukov K, Matsukawa S, Tanaka H, Iwai T, Imanishi T, Hirota K (2019) Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinIONTM nanopore sequencer. FEBS Open Bio 9:548–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khadka S, Nshimiyimana JB, Zou P, Koirala N, Xion L (2020) Biodegradation Kinetics of Diethyl Phthalate by Three Newly Isolated Strains of Pseudomonas. Scientific African 8(e00380):1–14

    Google Scholar 

  • Khan Z, Roman D, Kintz T, Alas MD, Yap R, Doty S (2014) Degradation, Phytoprotection and Phytoremediation of Phenanthrene by Endophyte Pseudomonas putida, PD1. Environ Sci Technol 48(20):12221–12228

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee J, Park J, Kim HJ, Cho G, Kim GH, Eun SH, Lee JJ, Choi G, Suh E, Choi S, Kim S, Kim YD, Kim SK, Kim SY, Kim S, Eom S, Moon HB, Kim S, Choi K (2015) Concentrations of phthalate metabolites in breast milk in Korea: Estimating exposure to phthalates and potential risks among breast-fed infants. Sci Total Environ 508:13–19

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee YS, Moon HB (2020) Occurrence, distribution, and sources of phthalates and non-phthalate plasticizers in sediment from semi-enclosed bays of Korea. Mar Pollut Bullet 151(110824):1–8

    Google Scholar 

  • Kolena B, Petrovicova I, Sidlovska M, Pilka T, Neuschlova M, Valentova I, Rybansky L, Trnovec T (2017) Occupational phthalate exposure and health outcomes among hairdressing apprentices. Hum Exp Toxicol 36:1100–1112

    Article  CAS  PubMed  Google Scholar 

  • Krieg NR, Holt JG (1984) Bergey’s Manual of Systematic Bacteriology”, vol 1. Williams & Wilkins Co., Baltimore, pp 161–172

    Google Scholar 

  • Krishna CV, Mohan Y, Phale PS (2006) Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4. Appl Microbiol Biotechnol 72:1263–1269

    Article  Google Scholar 

  • Krishna CV, Phale PS (2008) Bacterial degradation of phthalate isomers and their esters. Indian J Microbiol 48:19–34

    Article  Google Scholar 

  • Kumar V, Maitra SS (2016) Biodegradation of endocrine disruptor dibutyl phthalate (DBP) by a newly isolated Methylobacillus sp. V29b and the DBP degradation pathway. 3 Biotech 6(200):1–12

  • Kumar V, Sharma N, Maitra SS (2017) Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F. Biotech Rep 15:1–12

    Article  Google Scholar 

  • Lee YM, Lee JE, Choe W, Kim T, Lee JY, Kho Y, Choi K, Zoh KD (2019) Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. Environ Int 126:635–643

    Article  CAS  PubMed  Google Scholar 

  • Li H, Gu JD (2007) Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr isolated from wetland sediment. Sci Total Environ 380:181–187

    Article  CAS  PubMed  Google Scholar 

  • Li R, Liang J, Gong Z, Zhang N, Duan H (2017) Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China. Sci Total Environ 580:388–397

    Article  CAS  PubMed  Google Scholar 

  • Liang DW, Zhang T, Fang HHP, He JZ (2008) Phthalates biodegradation in the environment. Appl Microbiol Biotechnol 80(2):183–198

    Article  CAS  PubMed  Google Scholar 

  • Liao CS, Chen LC, Chen BS, Lin SH (2010) Bioremediation of endocrine disruptor di-n-butyl phthalate ester by Deinococcus radiodurans and Pseudomonas stutzeri. Chemosphere 78:342–346

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Tang F, Wang Y, Zhao JH, Zeng X, Luo QF et al (2009) Biodegradation of dimethyl phthalate, diethyl phthalate, and di-n-butyl phthalate by Rhodococcus sp L4 isolated from activated sludge. J Hazard Mater 168(2–3):938–943

    Article  CAS  PubMed  Google Scholar 

  • MacFadden JF (1980) Biochemical Tests for Identification of Medical Bacteria. Williams and Wilkins, Baltimore

    Google Scholar 

  • Mahto JK, Neetu N, Sharma M, Dubey M, Vellanki BP, Kumar P (2022b) Structural Insights into Dihydroxylation of Terephthalate, a Product of Polyethylene Terephthalate Degradation. J Bacteriol 204(3):e0054321. https://doi.org/10.1128/JB.00543-21

    Article  PubMed  Google Scholar 

  • Mahto JK, Neetu N, Waghmode B, Kuatsjah E, Sharma M, Sircar D, Sharma AK, Tomar S, Eltis LD, Kumar P (2021) Molecular insights into substrate recognition and catalysis by phthalate dioxygenase from Comamonas testosteroni. J Biol Chem 297(6):101416. https://doi.org/10.1016/j.jbc.2021.101416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahto JK, Sharma M, Neetu N, Kayastha A, Aggarwal S, Kumar P (2022a) Conformational flexibility enables catalysis of phthalate cis-4,5-dihydrodiol dehydrogenase. Arch Biochem Biophys 3(727):109314. https://doi.org/10.1016/j.abb.2022.109314

    Article  CAS  Google Scholar 

  • Maia M, Capão A, Procópio L (2019) Biosurfactant produced by oil-degrading Pseudomonas putida AM-b1 strain with potential for microbial enhanced oil recovery. Bioremediat J 23(4):302–310. https://doi.org/10.1080/10889868.2019.1669527

    Article  CAS  Google Scholar 

  • Molina L, Segura A, Duque E, Ramos JL (2020) Chapter Four - The versatility of Pseudomonas putida in the rhizosphere environment. Adv Appl Microbiol 110:149–180

    Article  CAS  PubMed  Google Scholar 

  • Navacharoen A, Vangnai AS (2011) Biodegradation of diethyl phthalate by an organic-solvent-tolerant Bacillus subtilis strain 3C3 and effect of phthalate ester coexistence. Int Biodeter Biodeg 65:818–826

    Article  CAS  Google Scholar 

  • Net S, Delmont A, Sempéré R, Paluselli A, Baghdad O (2015) Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ Sci Technol 49(7):4019–4035

    Article  CAS  PubMed  Google Scholar 

  • Nozawa T, Maruyama Y (1988) Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. J Bacteriol 170:5778–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perpetuo EA, da Silva ECN, Karolski B, Nascimento CAO (2020) Biodegradation of diethyl-phthalate (DEP) by halotolerant bacteria isolated from an estuarine environment. Biodegradation 31:331–340. https://doi.org/10.1007/s10532-020-09913-y

    Article  CAS  PubMed  Google Scholar 

  • Sarkar J, Chowdhury PP, Dutta TK (2013) complete degradation of di-n-octyl phthalate by Gordonia sp. strain Dop5. Chemosphere 90:2571–2577

    Article  CAS  PubMed  Google Scholar 

  • Schwedler G, Seiwert M, Fiddicke U, Issleb S, Holzer J, Nendza J, Wilhelm M, Wittsiepe J, Koch HM, Schindler BK et al (2017) Human biomonitoring pilot study DEMOCOPHES in Germany: Contribution to a harmonized European approach. Int J Hyg Environ Health 220:686–696

    Article  PubMed  Google Scholar 

  • Selvaraj KK, Sundaramoorthy G, Ravichandran PK, Girijan GK, Sampath S, Ramaswamy BR (2015) Phthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluations. Environ Geochem Health 37(1):83–96

    Article  CAS  PubMed  Google Scholar 

  • Seyoum A, Pradhan A (2019) Effect of phthalates on development, reproduction, fat metabolism and lifespan in Daphnia Magna. Sci Total Environ 654(1):969–977

    Article  CAS  PubMed  Google Scholar 

  • Shariati S, Ebenau-Jehle C, Pourbabaee AA, Alikhani HA, Rodriguez-Franco M, Agne M, Jacoby M, Geiger R, Shariati F, Boll M (2022a) Degradation of dibutyl phthalate by Paenarthrobacter sp. Shss isolated from Saravan landfill, Hyrcanian Forests, Iran. Biodegradation 33(1):59–70. https://doi.org/10.1007/s10532-021-09966-7

    Article  CAS  PubMed  Google Scholar 

  • Shariati S, Pourbabaee AA, Alikhani HA, Rezaei KA (2019a) Assessment of phthalic acid esters pollution in Anzali wetland, north of Iran. Int J Environ Sci TE 16:7025–7036

    Article  CAS  Google Scholar 

  • Shariati S, Pourbabaee A, Alikhani H, Rezaei K (2019b) Investigation of Heavy Metal Contamination in the Surface Sediments of Anzali wetland in North of Iran. Pollution 5(1):211–224

    CAS  Google Scholar 

  • Shariati S, Pourbabaee AA, Alikhani HA, Rezaei KA (2021) Anaerobic biodegradation of phthalic acid by an indigenous Ralstonia pickettii strain SHAn2 isolated from Anzali international wetland. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03677-5

    Article  Google Scholar 

  • Shariati S, Pourbabaee AA, Alikhani HA, Rezaei KA (2022b) Anaerobic biodegradation of phthalic acid by an indigenous Ralstonia pickettii strain SHAn2 isolated from Anzali international wetland. Int J Environ Sci Technol 19:4827–4838. https://doi.org/10.1007/s13762-021-03677-5

    Article  CAS  Google Scholar 

  • Sicińska P, Mokra K, Wozniak K et al (2021) Genotoxic risk assessment and mechanism of DNA damage induced by phthalates and their metabolites in human peripheral blood mononuclear cells. Sci Rep 11:1658

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva MJ, Reidy JA, Samandar E, Herbert AR, Needham LL, Calafat AM (2005) Detection of phthalate metabolites in human saliva. Arch Toxicol 79:647–652

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Dalal V, Mahto JK, Kumar P (2017) Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog. 2017. Jour Hazard Mater 338:11–22

    Article  CAS  Google Scholar 

  • Song X, Zhuo Q, Tang S, Xie T, Chen Z, Zeng Z, Zhang Y, Niu X, Yin H, Zeng F, He C (2020) Concentrations of phthalates metabolites in blood and semen and the potential effects on semen concentration and motility among residents of the Pearl River Delta region in China. Emerg Contam 6:39–43

    Article  Google Scholar 

  • Sun J, Wu X, Gan J (2015) Uptake and Metabolism of Phthalate Esters by Edible Plants. Environ Sci Technol 49(14):8471–8478

    Article  CAS  PubMed  Google Scholar 

  • Tang S, He C, Tahi P, Vijayasarathy S, Mackie R, Toms LML, Thompson K, Hobsond P, Tscharke B, O’Brien JW, Mueller JF (2020) Concentrations of phthalate metabolites in Australian urine samples and their contribution to the per capita loads in wastewater. Environ Int 137(105534):1–8

    Google Scholar 

  • Tao Y, Lia H, Gub J, Shi H, Han S, Jiao Y, Zhong G, Zhang Q, Akindolie MS, Lina Y, Chen Z, Zhang Y (2019) Metabolism of diethyl phthalate (DEP) and identification of degradation intermediates by Pseudomonas sp. DNE-S1. Ecotoxicol Environ Saf 173:411–418

    Article  CAS  PubMed  Google Scholar 

  • Tran TM, Kannan K (2015) Occurrence of phthalate diesters in particulate and vapor phases in indoor air and implications for human exposure in Albany, New York, USA. Arch Environ Contam Toxicol 68:489–499

    Article  CAS  PubMed  Google Scholar 

  • Tsai CK, Cheng H, Hsu TY, Wang JY, Hung CH, Tsai CC, Lai YJ, Lin YJ, Chin JYH, Tain YL, Chen CC, Yu HR (2021) Prenatal Exposure to Di-Ethyl Phthalate (DEP) Is Related to Increasing Neonatal IgE Levels and the Altering of the Immune Polarization of Helper-T Cells. Int J Env Res Pub He 18(12):6364

    Article  CAS  Google Scholar 

  • Upson K, Sathyanarayana S, De Roos AJ, Thompson ML, Scholes D, Dills R, Holt VL (2013) Phthalates and risk of endometriosis. Environ Res 126:91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Kannan ZhuH, K, (2019) A review of biomonitoring of phthalate exposures. Toxics 7(21):1–28

    CAS  Google Scholar 

  • Wang Y, Miao B, Hou D, Wu X, Peng B (2012) Biodegradation of di-n-butyl phthalate and expression of the 3,4-phthalate dioxygenase gene in Arthrobacter sp. ZH2 strain. Process Biochem 47:936–940

    Article  CAS  Google Scholar 

  • Wang Y, Zhan W, Liu Y, Cheng S, Zhang C, Ma J, Chen R (2020) Di-n-octyl phthalate degradation by a halotolerant bacterial consortium LF and its application in soil. Environ Technol 42:2749–2756

    Article  PubMed  Google Scholar 

  • Ward PG, de Roo G, O’Connor KE (2005) Accumulation of Polyhydroxyalkanoate from Styrene and Phylacetic Acid by Pseudomonas putida CA-3”. Appl Environ Microbiol 71:2046–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver JA, Beverly BEJ, Keshava N, Mudipalli A, Arzuaga X, Cai C, Ak H, Makris SL, Yost EE (2020) Hazards of diethyl phthalate (DEP) exposure: A systematic review of animal toxicology studies. Environ Int 145:105848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weschler CJ, Bekö G, Koch HM, Salthammer T, Schripp T, Toftum J, Clausen G (2015) Transdermal Uptake of Diethyl Phthalate and Di(n-butyl) Phthalate Directly from Air: Experimental Verification. Environ Health Perspect 123:928–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu RX, Liang QY, Dai DC, Jin YY, Wang WL, Chao W (2010) Complete degradation of di-n-octyl phthalate by biochemical cooperation between Gordonia sp. strain JDC-2 and Arthrobacter sp. strain JDC-32 isolated from activated sludge. J Hazard Mater 176:262–268

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011a) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35(2):299–323

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Wang Y, Liang R, Dai Q, Jin D, Chao W (2011b) Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Agrobacterium sp. and the biochemical pathway. Process Biochem 46:1090–1094

    Article  CAS  Google Scholar 

  • Wu XL, Wang YY, Dai QY, Liang RX, Jin DC (2011c) Isolation and characterization of four di-n-butyl phthalate (DBP)-degrading Gordonia sp. strains and cloning the 3,4-phthalate dioxygenase gene. World J Microbiol Biotechnol 27:2611–2617

    Article  CAS  Google Scholar 

  • Xu X, Li H, Gu J (2005) Biodegradation of an endocrine-disrupting chemical di-nbutyl phthalate ester by Pseudomonas fluorescens B-1. Int Biodeterior Biodegrad 55:9–15

    Article  CAS  Google Scholar 

  • Yang T, Ren L, Jia Y, Fan S, Wang J, Wang J, Nahurira R, Wang H, Yan Y (2018) Biodegradation of di-(2-ethylhexyl) phthalate by Rhodococcus ruber YC-YT1 in contaminated water and soil. Int J Environ Res Public Health 15(964):1–20

    Google Scholar 

  • Zeng F, Cui K, Li X, Fu J, Sheng G (2004) Biodegradation kinetics of phthalate esters by Pseudomonas fluoresences FS1. Process Biochem 39(9):1125–1129

    Article  CAS  Google Scholar 

  • Zhang M, Yu X, Wang Y, Hu Y, Liu S (2013) A Highly Sensitive Indirect Competitive Enzyme-Linked Immunosorbent Assay (ic-ELISA) by Antigen Coating for Diethyl Phthalate Analysis in Foods. Food Anal Methods 6:1223–1228

    Article  Google Scholar 

  • Zhang Y, Jiao Y, Li Z, Yang Y (2021) Hazards of phthalates (PAEs) exposure: A review of aquatic animal toxicology studies. Sci Total Environ 771(145418):1–23

    Google Scholar 

  • Zhao HM, Du H, Lin J, Chen XB, Li YW, Li H, Cai QY, Mo CH, Qin HM, Wong MH (2016) Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil. Sci Total Environ 562:170–178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Matthias Boll and Ag Boll group, Albert Ludwig University, Freiburg, Germany, for their support in the GC analysis and 16S rRNA sequencing. Also, financial support for this research was provided by Iran’s National Elites Foundation and the Iran National Science Foundation (INSF) under Grant 4013906.

Funding

Financial support for this research was provided by Iran’s National Elites Foundation and the Iran National Science Foundation (INSF) under Grant 4013906.

Author information

Authors and Affiliations

Authors

Contributions

Shayan Shariati: Data curation, analytical method, biodegradation tests, data analysis, funding acquisition, isolation of bacteria, methodology, project administration, writing (original draft), writing (review and editing). Ali Pourbabaee: Data curation, methodology, validation, writing (review and editing), project administration, supervision. Hossein Ali Alikhani: Data curation, methodology, validation, writing (review and editing), project administration, supervision.

Corresponding authors

Correspondence to Shayan Shariati or Ahmad Ali Pourbabaee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariati, S., Pourbabaee, A.A. & Alikhani, H.A. Biodegradation of diethyl phthalate and phthalic acid by a new indigenous Pseudomonas putida. Folia Microbiol 68, 477–488 (2023). https://doi.org/10.1007/s12223-022-01022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-022-01022-y

Keywords

Navigation