Skip to main content

Advertisement

Log in

Establishment and characterization of silver-resistant Enterococcus faecalis

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Enterococcus faecalis is a Gram-positive facultative anaerobe involved in many fatal or refractory infections of humans. Silver, often used as silver ions (Ag+) or nanoparticles (AgNPs), is a strong and broad-spectrum antibacterial agent, but E. faecalis shows resistance against it. Despite this, the knowledge about the resistance of E. faecalis against silver is still lacking. In this study, the silver-resistant E. faecalis strains (AgR and ANR E. faecalis) were established through a serial selection method. Their biological and silver-resistant features as well as the Gene Ontology (GO) in comparison with the original E. faecalis were evaluated. The results showed that the silver-resistant E. faecalis could proliferate as original bacteria and had strong resistance against both Ag+ and AgNPs. The minimum bactericidal concentrations (MBCs) of AgNO3 on original, AgR, and ANR E. faecalis were 400 mg/L, 600 mg/L, and 500 mg/L, and the MBCs of AgNPs on these strains were 80 mg/L, 110 mg/L, and 130 mg/L, respectively. GO analysis revealed significant difference (P < 0.05) in gene expressions of biological process (BP), cellular component (CC), and molecular function (MF) among original, AgR, and ANR E. faecalis. These findings provided a significant basis for further understanding and managing the silver-resistance of E. faecalis in infection-control environments. The mechanism behind Ag+/AgNPs resistance of E. faecalis needs to be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akiyama Y, Ito K (2001) Roles of homooligomerization and membrane association in ATPase and proteolytic activities of FtsH in vitro. Biochemistry 40:7687–7693

    Article  CAS  Google Scholar 

  • Bauer S, Grossmann S, Vingron M, Robinson PN (2008) Ontologizer 2.0--a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24:1650–1651

    Article  CAS  Google Scholar 

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 52:1636–1653

    Article  CAS  Google Scholar 

  • Croucher NJ, Fookes MC, Perkins TT, Turner DJ, Marguerat SB, Keane T, Quail MA, He M, Assefa S, Bähler J, Kingsley RA, Parkhill J, Bentley SD, Dougan G, Thomson NR (2009) A simple method for directional transcriptome sequencing using Illumina technology. Nucleic Acids Res 37:e148

    Article  Google Scholar 

  • Dejongh M, Van Dort P, Ramsay B (2004) Linking molecular function and biological process terms in the ontology for gene expression data analysis. Conf Proc IEEE Eng Med Biol Soc 4:2984–2986

    Google Scholar 

  • Desai DG, Liao KS, Cevallos ME, Trautner BW (2010) Silver or nitrofurazone impregnation of urinary catheters has a minimal effect on uropathogen adherence. J Urol 184:2565–2571

    Article  CAS  Google Scholar 

  • Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23:257–258

    Article  CAS  Google Scholar 

  • Fan W, Liu D, Li Y, Sun Q, Fan B (2018a) AgCa-PLGA submicron particles inhibit the growth and colonization of E. faecalis and P. Gingivalis on dentin through infiltration into dentinal tubules. Int J Pharm 552:206–216

    Article  CAS  Google Scholar 

  • Fan W, Sun Q, Li Y, Tay FR, Fan B (2018b) Synergistic mechanism of Ag(+)-Zn(2+) in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection. J Nanobiotechnology 16:10

    Article  Google Scholar 

  • Figdor D, Davies JK, Sundqvist G (2003) Starvation survival, growth and recovery of Enterococcus faecalis in human serum. Oral Microbiol Immunol 18:234–239

    Article  CAS  Google Scholar 

  • Friedman L, Alder JD, Silverman JA (2006) Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 50:2137–2145

    Article  CAS  Google Scholar 

  • Gonzalez AM, Corpus E, Pozos-Guillen A, Silva-Herzog D, Aragon-Piña A, Cohenca N (2014) Continuous drip flow system to develop biofilm of E. faecalis under anaerobic conditions. Sci World J 2014:706189

    Google Scholar 

  • Graves JL Jr, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, Barrick JE (2015) Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet 6:42

    Article  Google Scholar 

  • Halkai KR, Mudda JA, Shivanna V, Rathod V, Halkai R (2018) Evaluation of antibacterial efficacy of fungal-derived silver nanoparticles against Enterococcus faecalis. Contemp Clin Dent 9:45–48

    Article  CAS  Google Scholar 

  • Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38:e131

    Article  Google Scholar 

  • Hashimoto K, Nishi H, Bryant S, Panchenko AR (2011) Caught in self-interaction: evolutionary and functional mechanisms of protein homooligomerization. Phys Biol 8:035007

    Article  Google Scholar 

  • Javidi M, Afkhami F, Zarei M, Ghazvini K, Rajabi O (2014) Efficacy of a combined nanoparticulate/calcium hydroxide root canal medication on elimination of Enterococcus faecalis. Aust Endod J 40:61–65

    Article  Google Scholar 

  • Jones MM (1985) Heavy-metal detoxification using sulfur compounds. Sulfur reports 4:119–150

    Article  CAS  Google Scholar 

  • Kart D, Kustimur AS, Sağıroğlu M, Kalkanci A (2017) Evaluation of antimicrobial durability and anti-biofilm effects in urinary catheters against Enterococcus faecalis clinical isolates and reference strains. Balkan Med J 34:546–552

    Article  CAS  Google Scholar 

  • Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek 71:95–107

    Article  CAS  Google Scholar 

  • Klein G (2003) Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int J Food Microbiol 88:123–131

    Article  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

    Article  CAS  Google Scholar 

  • Lind PA, Andersson DI (2008) Whole-genome mutational biases in bacteria. Proc Natl Acad Sci U S A 105:17878–17883

    Article  CAS  Google Scholar 

  • Malfanti A, Miletto I, Bottinelli E, Zonari D, Blandino G, Berlier G, Arpicco S (2016) Delivery of gemcitabine prodrugs employing mesoporous silica nanoparticles. Molecules 21:522

    Article  Google Scholar 

  • Melino S, Sabelli R, Paci M (2011) Allyl sulfur compounds and cellular detoxification system: effects and perspectives in cancer therapy. Amino Acids 41:103–112

    Article  CAS  Google Scholar 

  • Nakazawa H, Arakaki A, Narita-Yamada S, Yashiro I, Jinno K, Aoki N, Tsuruyama A, Okamura Y, Tanikawa S, Fujita N, Takeyama H, Matsunaga T (2009) Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res 19:1801–1808

    Article  CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  CAS  Google Scholar 

  • Pal D (2006) On gene ontology and function annotation. Bioinformation 1:97–98

    Article  CAS  Google Scholar 

  • Randall CP, Oyama LB, Bostock JM, Chopra I, O'Neill AJ (2013) The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. J Antimicrob Chemother 68:131–138

    Article  CAS  Google Scholar 

  • Reise M, Gottschaldt M, Matz C, Völpel A, Jandt KD, Schubert US, Sigusch BW (2016) Antibacterial effect of silver (I) carbohydrate complexes on oral pathogenic key species in vitro. BMC Oral Health 16:42

    Article  Google Scholar 

  • Rôças IN, Siqueira JF Jr, Santos KR (2004) Association of Enterococcus faecalis with different forms of periradicular diseases. J Endod 30:315–320

    Article  Google Scholar 

  • Rodrigues CT, de Andrade FB, de Vasconcelos LRSM, Midena RZ, Pereira TC, Kuga MC, Duarte MAH, Bernardineli N (2018) Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules. Int Endod J 51:901–911

    Article  CAS  Google Scholar 

  • Rosen E, Tsesis I, Elbahary S, Storzi N, Kolodkin-Gal I (2016) Eradication of Enterococcus faecalis biofilms on human dentin. Front Microbiol 7:2055

    Article  Google Scholar 

  • Selwood T, Jaffe EK (2012) Dynamic dissociating homo-oligomers and the control of protein function. Arch Biochem Biophys 519:131–143

    Article  CAS  Google Scholar 

  • Silver S, Walderhaug M (1992) Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 56:195–228

    Article  CAS  Google Scholar 

  • Stuart CH, Schwartz SA, Beeson TJ, Owatz CB (2006) Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 32:93–98

    Article  Google Scholar 

  • Swaminathan S, Alangaden GJ (2010) Treatment of resistant enterococcal urinary tract infections. Curr Infect Dis Rep 12:455–464

    Article  Google Scholar 

  • Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF (2007) A new method to measure the semantic similarity of GO terms. Bioinformatics 23:1274–1281

    Article  CAS  Google Scholar 

  • Wu D, Fan W, Kishen A, Gutmann JL, Fan B (2014) Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod 40:285–290

    Article  Google Scholar 

  • Zhang C, Du J, Peng Z (2015) Correlation between Enterococcus faecalis and persistent intraradicular infection compared with primary intraradicular infection: a systematic review. J Endod 41:1207–1213

    Article  Google Scholar 

Download references

Funding

This research was supported by Natural Science Foundation of China (Grant No. 81570969).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Fan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Sun, Q., Duan, M. et al. Establishment and characterization of silver-resistant Enterococcus faecalis. Folia Microbiol 65, 721–733 (2020). https://doi.org/10.1007/s12223-020-00778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-020-00778-5

Navigation