Skip to main content
Log in

Improved mortality of the Formosan subterranean termite by fungi, when amended with cuticle-degrading enzymes or eicosanoid biosynthesis inhibitors

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Formosan subterranean termites (FST) were exposed to strains of Beauveria pseudobassiana (Bpb) and Isaria fumosorosea (Ifr) to determine virulence of the fungi. Once lethality was determined, sublethal doses of Bpb were combined with enzymes capable of degrading the insect cuticle to measure the potential to enhance fungal infection. Bpb applied to FST in combination with proteinases and a chitinase caused increased mortality over the fungus alone. Mortality was enhanced when Ifr was applied to FST in combination with a chitinase isolated from Serratia marcesans. A lipase isolated from Pseudomonas cepacia, when combined with Ifr, also resulted in greater mortality than all control treatments. FST were also exposed to the eicosanoid biosynthesis inhibitors (EBIs) dexamethasone (DEX), ibuprofen (IBU), and ibuprofen sodium salt (IBUNA), in combination with Ifr. Combining Ifr with IBUNA caused significantly increased mortality on days 6, 7, and 9. Cuticle-degrading enzymes and EBIs may have potential to enhance the pathogenic effect of a fungal control agent against the Formosan subterranean termite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bulmer MS, Bachelet I, Raman R, Rosengaus RB, Sasisekharan R (2009) Targeting an antimicrobial effector function in insect immunity as a pest control strategy. PNAS 106(31):12652–12657

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chouvenc T, Su NY, Grace JK (2011) Fifty years of attempted biological control of termites—analysis of a failure. Biol Cont 59:69–82

    Article  Google Scholar 

  • Cody RP, Smith JK (1997) Applied statistics and the SAS programming language, 4th edn. Prentice-Hall, Inc., Upper Saddle River

    Google Scholar 

  • Connick WJ Jr, Osbrink WLA, Wright MS, Williams KS, Daigle DJ, Boykin DL, Lax AR (2001) Increased mortality of Coptotermes formosanus (Isoptera: Rhinotermitidae) exposed to eicosanoid biosynthesis inhibitors and Serratia marcesans (Eubacteriales: Enterobacteriaceae). Environ Entomol 30(2):449–455

    Article  CAS  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbio and Biotech 71:773–782

    Article  CAS  Google Scholar 

  • Dunlap CA, Jackson MA, Wright MS (2007) A foam formulation of Paecilomyces fumosoroseus, an entomopathogenic biocontrol agent. Biocontrol Sci and Technol 17:513–523

    Article  Google Scholar 

  • El-Sayed GN, Coudron TA, Ignoffo CM, Riba G (1989) Chitinolytic activity and virulence associated with native and mutant isolates of an entomopathogenic fungus Nomuraea rileyi. J Invert Pathol 54:394–403

    Article  Google Scholar 

  • Ghikas DV, Kouvelis VN, Typas MA (2010) Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brogniartii. BMC Microbiol 10:174–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta SC, Leathers TD, El-Sayed GN, Ignoffo CM (1994) Relationships among enzyme activities and virulence parameters in Beauveria bassiana infections of Galleria mellonella and Trichoplusia ni. J Invert Pathol 64:13–17

    Article  CAS  Google Scholar 

  • Hegedus DD, Khachatourians GG (1988) Production of an extracellular lipase by Beauveria bassiana. Biotech Lett 10:637–642

    Article  CAS  Google Scholar 

  • Hernandez-Torres I, Iracheta M, Galan-Wong LJ, Hernandez C, Contreras J, Jackson M, Pereyra-Alferez B (2004) A Paecilomyces fumosoroseus mutant over-producing chitinase displays enhanced virulence against Bemisia tabaci. World J Microbiol Biotech 20:207–210

    Article  CAS  Google Scholar 

  • Howard RW, Miller JS, Stanley DW (1998) The influence of bacterial species and intensity of infections on nodule formation in insects. J Insect Physiol 44:157–164

    Article  PubMed  CAS  Google Scholar 

  • Jackson MA (1999) Method for producing dessication tolerant Paecilomyces fumosoroseus spores. US Patent 5:968,808

    Google Scholar 

  • Jackson MA, Cliquet S, Iten LB (2003) Media and fermentation processes for the rapid production of high concentrations of stable blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Biocontrol Sci and Technol 13:23–33

    Article  Google Scholar 

  • Jackson MA, McGuire MR, Lacey LA, Wraight SP (1997) Liquid culture production of desiccation tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Mycol Res 101:35–41

    Article  Google Scholar 

  • Karasuda S, Tanaka S, Kajihara H, Yamamoto Y, Koga D (2003) Plant chitinase as a possible biocontrol agent for use instead of chemical fungicides. Biosci Biotech and Biochem 67:221–224

    Article  CAS  Google Scholar 

  • Khan A, Williams K, Molloy MP, Nevalainen H (2003) Purification and characterization of a serine protease and chitinases from Paecilomyces lilacinus and detection of chitinase activity on 2D gels. Prot Express and Purif 32:210–220

    Article  CAS  Google Scholar 

  • Luangsa-Ard JJ, Hywel-Jones NL, Manoch L, Samson RA (2005) On there lationships of Paecilomyces sect. Isarioidea species. Mycol Res 109:581–589

    Article  PubMed  CAS  Google Scholar 

  • Mendonsa ES, Vartak PH, Rao JU, Deshpande MV (1996) An enzyme from Myrothecium verrucaria that degrades insect cuticles for biocontrol of Aedes aegypti mosquito. Biotechnol Lett 18:373–376

    Article  CAS  Google Scholar 

  • Miller JS, Nguyen T, Stanley-Samuelson DW (1994) Eicosanoids mediate insect nodulation responses to bacterial infections. Proc Nat Acad Sci USA 91:12418–12422

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miller JS, Howard W, Nguyen T, Nguyen A, Rosario RMT, Stanley-Samuelson DW (1996) Eicosanoids mediate nodulation responses to bacterial infections in larvae of the tenebrionid beetle, Zophobas atratus. J Insect Phys 42:3–12

    Article  CAS  Google Scholar 

  • Miller JS, Howard RW, Rana RL, Tunaz H, Stanley DW (1999) Eicosanoids mediate nodulation reactions to bacterial infections in adults of the cricket, Gryllus assimilis. J Insect Phys 45:75–83

    Article  CAS  Google Scholar 

  • Nahar P, Ghormade V, Deshpande MV (2004) The extracellular production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J Invert Pathol 85:80–88

    Article  CAS  Google Scholar 

  • Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Yamaji M (2002) Pathogenicity of entomopathogenic fungi to the termite, Reticulitermes speratus. Jap J Appl Entomol Zool 46:89–91

    Article  Google Scholar 

  • St Leger RJ, Joshi L, Bidochka MJ, Rizzo MW, Roberts DW (1996) Characterization and ultrastructural localization of chitinases from Metarhizium anisopliae, M. flavoviridae and Beauveria bassiana during fungal invasion of host (Manduca sexta) cuticle. Appl and Environ Microbiol 62:907–912

    CAS  Google Scholar 

  • Stanley DW (1998) Eicosanoids mediate insect cellular immune reactions to bacterial infections. Adv Experimental Med and Biol 433:359–362

    Article  Google Scholar 

  • Stanley-Samuelson DW, Jensen E, Nickerson KW, Tiebel K, Ogg CL, Howard RW (1991) Insect immune response to bacterial infection is mediated by eicosanoids. Proc Natl Acad Sci USA 88:1064–1068

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Su N-Y (2002) Novel technologies for subterranean termite control. Sociobiol 40:95–101

    Google Scholar 

  • Su N-Y, Scheffrahn RH (1986) A method to access, trap, and monitor field populations of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in the urban environment. Sociobiol 12:299–304

    Google Scholar 

  • Taira T, Ohnuma T, Yamagami T, Aso Y, Ishiguro M, Ishihara M (2002) Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell wall. Biosci Biotechnol and Biochem 66:970–977

    Article  CAS  Google Scholar 

  • Wen CM, Tseng CS, Cheng CY, Li YK (2002) Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol and Appl Biochem 35:213–219

    Article  CAS  Google Scholar 

  • Wright MS, Connick WJ, Jackson MA (2003) Use of Paecilomyces spp. as pathogenic agents against subterranean termites. U.S. Patent 6,660,291.

  • Wright MS, Raina AK, Lax AR (2005) A strain of the fungus Metarhizium anisopliae for controlling subterranean termites. J Econ Entomol 98:1451–1458

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Mark A. Jackson, Dr. Matthew R. Tarver, and Christopher B. Florane for providing materials; and Bridgette H. Duplantis and Angela R. Payne for technical assistance. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Conflict of interest

The authors affirm that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen S. Wright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, M.S., Lax, A.R. Improved mortality of the Formosan subterranean termite by fungi, when amended with cuticle-degrading enzymes or eicosanoid biosynthesis inhibitors. Folia Microbiol 61, 73–83 (2016). https://doi.org/10.1007/s12223-015-0412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0412-0

Keywords

Navigation