Skip to main content
Log in

Insect growth regulators and chinaberry (Melia azedarach) fruit acetone extract disrupt intermediary metabolism and alter immunocyte profile in Agrotis ipsilon larvae

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The black cutworm Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) is a pervasive agricultural pest especially damaging to seedlings. To develop more environmentally responsible and specific control measures, we examined the effects of Melia azedarach L. (Sapindales: Meliaceae) fruit acetone extract and insect growth regulators flufenoxuron and pyriproxyfen on survival, parameters of intermediary metabolism, and hemocyte profile in late sixth-instar larvae. At the LC50, all three tested compounds reduced hemolymph total protein content, while pyriproxyfen and M. azedarach fruit acetone extract also reduced total lipid and carbohydrate. Flufenoxuron and pyriproxyfen increased hemolymph acid phosphatase activity and decreased alkaline phosphatase activity. All tested compounds reduced transaminase activity, while the fruit extract also decreased trehalase and invertase activities, and pyriproxyfen decreased trehalase activity and increased amylase activity. Flufenoxuron and the fruit extract increased whereas pyriproxyfen decreased total hemocyte count. Phase-contrast light microscopy revealed the presence of five hemocyte types, prohemocytes, plasmatocytes, granulocytes, spherulocytes, and oenocytoids. Effects on hemocyte profile varied among the tested compounds, with flufenoxuron and pyriproxyfen both reducing phagocytic plasmatocyte numbers. Flufenoxuron, pyriproxyfen, and M. azedarach fruit acetone extract can disrupt the development of A. ipsilon larvae by targeting multiple metabolic pathways as well as the cellular immune system. These findings may aid in the development of A. ipsilon control measures based on natural compounds less damaging to the local ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Abd El-Aziz NM, Shaurub EH (2014) Sub-lethal effects of spinetoram on the activities of some detoxifying enzymes in the black cutworm Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Afr Entomol 22:136–143

    Article  Google Scholar 

  • Abdel-Mageed A, El-Bokl M, Khidr A, Said R (2018) Disruptive effects of selected chitin synthesis inhibitors on cotton leaf worm, Spodoptera littoralis (Boisd.). Aust J Basic Appl Sci 12:4–9

    CAS  Google Scholar 

  • Abo El-Ghar GE, Fujiyoshi P, Matsumura F (2004) Significance of the sulfonylurea receptor (SUR) as the target of diflubenzuron in chitin synthesis inhibition in Drosophila melanogaster and Blatella germanica. Insect Biochem Mol Biol 34:743–752

    Article  CAS  Google Scholar 

  • Abo El-Ghar GE, Khalil MS, Eid TM (1994) Effects of plant extracts on development and fecundity of Agrotis ipsilon (Lepidoptera: Noctuidae). Bull Ent Soc Egypt Econ Ser 21:171–190

    Google Scholar 

  • Akacha M, Chaieb I, Laarif A, Haouala R, Brougham N (2017) Effects of Melia azedarach leaf extracts on nutritional behavior and growth of Spodoptera littoralis. Tunis J Plant Prot 12:61–70

    Google Scholar 

  • Akai H, Sato S (1971) An ultrastructural study of the haemopoietic organs of the silkworm, Bombyx mori. J Insect Physiol 17:1665–1676

    Article  Google Scholar 

  • Alché LE, Ferek GA, Meo M, Coto CE, Maier MS (2003) An antiviral meliacarpin from leaves of Melia azedarach. J Nature Res 58c:215–219

  • Ali AM, Mohamed DS, Shaurub EH, El-Sayed AM (2017) Antifeedant activity and some biochemical effects of garlic and lemon essential oils on Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). J Entomol Zool Stud 5:1476–1482

    Google Scholar 

  • Ali AN, Muntadher MK, Aljanabi MML (2020) Toxicity of aqueous and organic solvent extracts of Melia azedarach (L) leaves in the larvae and pupae of Culex pipiens. Biopestic Int 16:13–19

    Google Scholar 

  • Assar AA, Abo El-Mahasen MM, Dahi HF, Amin HS (2016) Biochemical effects of some insect growth regulators and bioinsecticides against cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). J Biosci Appl Res 2:587–594

    Article  Google Scholar 

  • Ayyad TH, Dorrah MA, Shaurub EH, El-Sadawy HA (2001) Effects of the entomopathogenic nematodes, Heterorhabditis bacteriophora HP88 and azadirachtin on the immune defence response and prophenoloxidase of Parasarcophaga surcoufi larvae (Diptera: Sarcophagidae). J Egypt Soc Parasitol 31:295–325

    Google Scholar 

  • Barbosa PRR, Oliveira MD, Barros EM, Michaud JP, Torres JB (2018) Differential impacts of six insecticides on a mealybug and its coccinellid predator. Ecotoxicol Environ Saf 147:963–971

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA (2001) Fat metabolism in insects. Annu Rev Nutr 21:23–46

    Article  CAS  PubMed  Google Scholar 

  • Carpinella MC, Ferrayoli CG, Palacios SM (2005) Antifungal synergistic effect of scopoletin, a hydroxycoumarin isolated from Melia azedarach L. fruits. J Agric Food Chem 53:2922–2927

    Article  CAS  PubMed  Google Scholar 

  • Christopher MSM, Mathavan S (1985) Regulation of digestive enzyme activity in the larvae of Catopsila crocale (Lepidoptera). J Insect Physiol 31:217–221

    Article  CAS  Google Scholar 

  • Coria C, Almiron W, Valladares G, Carpinella C, Luduena F, Defago M, Palacios S (2008) Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae). Bioresour Technol 99:3066–3070

    Article  CAS  PubMed  Google Scholar 

  • Cosi E, Abidalla MT, Roversi PF (2010) The effect of Tween 80 on egg shells permeabilization in Galleria mellonella (L.) (Lepidoptera, Pyralidae). CryoLetters 31:291–300

    CAS  PubMed  Google Scholar 

  • Dadé M, Zeinsteger P, Bozzolo F, Mestorino N (2018) Repellent and lethal activities of extracts from fruits of chinaberry (Melia azedarach L., Meliaceae) against Triatoma infestans. Front Vet Sci 5:158

  • Dhadialla TS, Retnakaran A, Smagghe G (2005) Insect growth and development-disturbing insecticides. Comprehensive insect molecular science. In: Gilbert LI, Kostas I, Gill SS (eds) volume 6, Control. Pergamon, Elsevier, Oxford, UK, pp 55–115

    Google Scholar 

  • Díaz M, Castillo L, Díaz CE, Coloma AG, Rossini C (2012) Limonoids from Melia azedarach with deterrent activity against insects. J Nat Prod 2:36–44

    Google Scholar 

  • Dorrah MA, Mohamed AA, Shaurub EH (2019) Immunosuppressive effects of the limonoid azadirachtin, insights on a nongenotoxic stress botanical, in flesh flies. Pestic Biochem Physiol 153:55–66

    Article  CAS  PubMed  Google Scholar 

  • Douris V, Steinbach D, Panteleri R, Livadaras I, Pickett JA, Van Leeuwen T, Nauen R, Vontas J (2016) Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis. Proc Natl Acad Sci USA 113:14692–14697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • El-Kady MB, Tayab EH, Mesbah HA, Saad AA (1990) The relative efficiency of the pregnancy inhibitory hormone medroxy progesterone acetate (MPA) and the insect growth inhibitor (XRD) on the greasy cutworm, Agrotis ipsilon (Huf.) (Noctuidae, Lepidoptera). Bull Ent Soc Egypt Econ Ser 118:93–104

    Google Scholar 

  • Etebari K, Bizhannia AR, Sorati R, Matindoost L (2007) Biochemical changes in haemolymph of silkworm larvae due to pyriproxyfen residue. Pestic Biochem Physiol 88:14–19

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge, UK, p 333

    Google Scholar 

  • Ghasemi V, Moharramipour S, Sendi JJ (2014) Impact of pyriproxyfen and methoxyfenozide on haemocytes of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae). J Crop Prot 3:449–458

    Google Scholar 

  • Ghoneim K, Tanani M, Hamada KH, Bassiouny A, Waheeb H (2015) Effects of novaluron and cyromazine, chitin synthesis inhibitors, on larval haemogram of Spodoptera littoralis (Boisd,) (Lepidoptera: Noctuidae). Int J Adv Res 3:554–576

    CAS  Google Scholar 

  • Goldsworthy GJ, Mordue W, Guthkelch J (1972) Studies on insect adipokinetic hormones. Gen Comp Endocrinol 18:545–551

    Article  CAS  PubMed  Google Scholar 

  • Hami M, Taibi F, Smagghe G, Soltani-Mazouni N (2005) Comparative toxicity of three ecdysone agonist insecticides against the Mediterranean flour moth. Comm Appl Biol Sci 70:767–774

    CAS  Google Scholar 

  • Harborne JB (1998) Phytochemical methods: a guide to modern techniques of plant analysis, 3rd edn. Chapman and Hall, London, UK, p 302

    Google Scholar 

  • Horowitz AR, Ellsworth PC, Ishaaya I (2009) Biorational pest control: An overview. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests: Application and resistance management. Springer, Heidelberg, Dordrecht, London, New York, pp 1–20

    Google Scholar 

  • Ishaaya I, Kontsedalov S, Horowitz AR (2005) Biorational insecticides: mechanism and cross-resistance. Arch Insect Biochem Physiol 58:192–199

    Article  CAS  PubMed  Google Scholar 

  • Ishaaya I, Swirski E (1976) Trehalase, invertase and amylase activities in the black scale, Saissetia oleae and their relation to host adaptability. J Insect Physiol 22:1025–1029

    Article  CAS  Google Scholar 

  • Isman MB (2020) Botanical insecticides in the twenty-first century – fulfilling their promise? Annu Rev Entomol 65:233–249

    Article  CAS  PubMed  Google Scholar 

  • Jeyasankar A, Premalatha S, Rani SJ (2012) Bio-efficacy of Solanum pseudocapsicum L. (Solanaceae) against black cutworm, Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae). J Biol Sci 12:174–179

    Article  Google Scholar 

  • Jones JC (1962) Current concepts concerning insect haemocytes. Am Zool 2:209–246

    Article  Google Scholar 

  • Jones JC (1964) Differential haemocyte counts from unfixed last stage Galleria mellonella. Am Zool 4:337–346

    Google Scholar 

  • Juarez JG, Garcia-Luna SM, Roundy CM, Branca A, Banfield MG, Hamer GL (2021) Susceptibility of South Texas Aedes aegypti to pyriproxyfen. Insects 12:460

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan AV, Ahmed QU, Mir RM, Shukla I, Khan AA (2011) Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains. Asian Pac J Trop Biomed 6:452–455

    Article  Google Scholar 

  • Khater HF (2011) Ecosmart biorational insecticides: alternative insect control strategies. In: Perveen F (ed) Insecticides – advances in integrated pest management. InTech, Rijeka, Croatia, pp 17–60

  • Khosravi R, Sendi JJ (2013) Effect of neem pesticide (Achook) on midgut enzymatic activities and selected biochemical compounds in the hemolymph of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). J Plant Prot Res 53:238–247

    Article  Google Scholar 

  • Kurihara Y, Shimazu T, Wago H (1992) Classification of hemocytes in the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae): II. Possible roles of granular plasmatocytes and oenocytoids in the cellular defense reactions. Appl Entomol Zool 27:237–242

    Article  Google Scholar 

  • Laufer H, Schin KS (1971) Quantitative studies of hydrolytic enzyme activity in the salivary gland of Chironomus tentans (Diptera: Chironomidae) during metamorphosis. Can Entomol 103:454–457

    Article  CAS  Google Scholar 

  • Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295–1309

    Article  CAS  PubMed  Google Scholar 

  • Li D, Wu X, Yu X, Huang Q, Tao L (2015) Synergistic effect of non-ionic surfactants Tween 80 and PEG6000 on cytotoxicity of insecticides. Environ Toxicol Pharmacol 39:677–682

    Article  CAS  PubMed  Google Scholar 

  • Matsumura F (2010) Studies on the action mechanism of benzoylurea insecticides to inhibit the process of chitin synthesis in insects: a review on the status of research activities in the past, the present and the future prospects. Pestic Biochem Physiol 97:133–139

    Article  CAS  Google Scholar 

  • Matsunaga H, Yoshino H, Isobe N, Kaneko H, Nakatsuka I, Yamada H (1995) Metabolism of pyriproxyfen in rats. 1. Absorption, disposition, excretion, and biotransformation studies with [phenoxyphenyl-14C] pyriproxyfen. J Agric Food Chem 43:235–240

    Article  CAS  Google Scholar 

  • Mazza G, Arizza V, Baracchi D, Barzanti GP, Benvenuti C, Francardi V, Frandi A, Gherardi F, Longo S, Manachini B, Perito B, Rumine P, Schillaci D, Turrillazzi S, Cervo R (2011) Antimicrobial activity of red palm weevil Rhynchophorus ferrugineus. Bull Insectol 64:33–41

    Google Scholar 

  • Mckenna MM, Hammad EMA, Farran MT (2013) Effect of Melia azedarach (Sapindales: Meliaceae) fruit extracts on citrus leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae). SpringerPlus 2:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirhaghparast SK, Zibaee A, Hoda H (2016) Effects of pyriproxyfen on intermediary metabolism of rice striped stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae). Proc Natl Acad Sci India Sect B Biol Sci 86:187–197

    Article  CAS  Google Scholar 

  • Mirhaghparast SK, Zibaee A, Hoda H, Sendi JJ (2015) Changes in cellular immune responses of Chilo suppressalis Walker (Lepidoptera: Crambidae) due to pyriproxyfen treatment. J Plant Prot Res 55:287–293

    Article  CAS  Google Scholar 

  • Munir A, Sultana B, Babar T, Bashir A, Amjad M, Hassan Q (2012) Investigation on the antioxidant activity of leaves, fruit and stem bark of Dhraik (Melia azedarach). Europ J Appl Sci 4:47–51

    Google Scholar 

  • Nakahara Y, Kanamori Y, Kiuchi M, Kamimura M (2003) In vitro studies of hematopoiesis in the silkworm: cell proliferation in and hemocyte discharge from the hematopoietic organ. J Insect Physiol 49:907–916

    Article  CAS  PubMed  Google Scholar 

  • Nation JL (2016) Insect physiology and biochemistry, 3rd edn. CRC Press, Boca Raton, FL, USA, p 690

    Google Scholar 

  • Naumoff DG (2001) β-fructosidase superfamily: Homology with some α-L-arabinases and β-D-xylosidases. Proteins 42:66–76

    Article  CAS  PubMed  Google Scholar 

  • Niwa R, Niwa YS (2014) Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Biosci Biotechnol Biochem 78:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Pandey JP, Tiwari RK (2012) Effect of some botanicals on hemocytes and molting of Papilio demoleus larvae. J Entomol 9:23–31

    Article  Google Scholar 

  • Patton RL (1961) The detoxification function of insect haemocytes. Ann Entomol Soc Am 54:696–698

    Article  CAS  Google Scholar 

  • Perveen N, Ahmad M (2017) Toxicity of some insecticides to the haemocytes of giant honeybee, Apis dorsata F. under laboratory conditions. Saudi J Biol Sci 24:1016–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasada Rao CG, Ray A, Ramamurty PS (1984) Effect of ligation and ecdysone on total haemocyte count in the tobacco caterpillar, Spodoptera litura (Lepidoptera: Noctuidae). Can J Zool 62:1461–1463

    Article  Google Scholar 

  • Raseroka CP, Ntshebe BH (2006) Evaluation of antimalarial activity of Melia azedarach. J Appl Zool Res 17:109–113

    Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Rembold H, Sharma GK, Gzoppelt T, Schmutterer H (1982) Azadirachtin: a potent insect growth regulator of plant origin. J Appl Entomol 93:12–17

    CAS  Google Scholar 

  • Roush R, Tabashnik BE (1990) Pesticide Resistance in Arthropods. Springer, Boston, MA, USA, p 352

    Book  Google Scholar 

  • Satake S, Kawabe Y, Mizoguchi A (2000) Carbohydrate metabolism during starvation in the silkworm Bombyx mori L. Arch Insect Biochem Physiol 44:90–98

    Article  CAS  PubMed  Google Scholar 

  • Scapinello J, de Oliveira JV, Chiaradia LA, Junior OT, Niero R, Dal Magro J (2014) Insecticidal and growth inhibiting action of the supercritical extracts of Melia azedarach on Spodoptera frugiperda. Rev Bras Eng Agricola Ambient 18:866–872

    Article  Google Scholar 

  • Senthil-Nathan S (2013) Physiological and biochemical effects of neem and other Meliaceae plants secondary metabolites against lepidopteran insects. Front Physiol 4:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Senthil-Nathan S, Chung PG, Murugan K (2004) Effect of botanical insecticides and bacterial toxins on the gut enzyme of the rice leaf folder Cnaphalocrocis medinalis. Phytoparasitica 32:433–443

    Article  Google Scholar 

  • Shaurub EH (2012) Immunomodulation in insects post-treatment with abiotic agents: A review. Eur J Entomol 109:303–316

    Article  CAS  Google Scholar 

  • Shaurub EH, Abdel Aal AE, Emara SA (2020) Suppressive effects of insect growth regulators on development, reproduction and nutritional indices of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae). Invertebr Reprod Dev 3:178–187

    Article  Google Scholar 

  • Shaurub EH, Abd El-Aziz NM (2015) Biochemical effects of lambda-cyhalothrin and lufenuron on Culex pipiens L. (Diptera: Culicidae). Int J Mosq Res 2:122–126

    Google Scholar 

  • Shaurub EH, Abd El-Meguid A, Abd El-Aziz NM (2014) Quantitative and ultrastructural changes in the haemocytes of Spodoptera littoralis (Boisd.) treated individually or in combinationwith Spodoptera littoralis multicapsid nucleopolyhedrovirus (SpliMNPV) and azadirachtin. Micron 65:62–68

    Article  CAS  Google Scholar 

  • Shaurub EH, Abou Gharsa GM (2012) Food consumption and utilization by Tribolium confusum du Val (Coleoptera: Tenebrionidae) larvae and their susceptibility to acetone extract of Nerium oleander L. (Apocynaceae) leaves in relation to three types of flour. J Stored Prod Res 51:56–60

    Article  Google Scholar 

  • Shaurub EH, Sabbour MM (2017) Impacts of pyriproxyfen, flufenoxuron and acetone extract of Melia azedarach fruits on the haemogram of the black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Adv Agric Sci 5:1–9

    Google Scholar 

  • Shaurub EH, Zohdy NZ, Abdel-Aal AE, Emara SA (2018) Effect of chlorfluazuron and flufenoxuron on development and reproductive performance of the black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Invertebr Reprod Dev 62:27–34

    Article  CAS  Google Scholar 

  • Shukla E, Thorat LJ, Nath BB, Gaikwad SM (2015) Insect trehalase: physiological significance and potential applications. Glycobiology 25:357–367

    Article  CAS  PubMed  Google Scholar 

  • Sial AA, Brunner JF (2010) Lethal and sublethal effects of an insect growth regulator, pyriproxyfen, on oblique-banded leafroller (Lepidoptera: Tortricidae). J Econ Entomol 103:340–347

    Article  CAS  PubMed  Google Scholar 

  • Strand MR (2008) The insect cellular immune response. Insect Sci 15:1–14

    Article  CAS  Google Scholar 

  • Sultana S, Akhtar N, Asif HM (2013) Phytochemical screening and antipyretic effects of hydromethanol extract of Melia azedarach leaves in rabbits. Bangladesh J Pharmacol 8:214–217

    Article  Google Scholar 

  • Sumathi A (2012) Hepatoprotective activity of Melia azedarach L. against carbon tetrachloride induced hepatic damage in rats. Int J Pharm Sci Res 3:387–388

    Google Scholar 

  • Szewczuk VD, Mongelli ER, Pomilio AB (2003) Antiparasitic activity of Melia azedarach growing in Argentina. Mol Med Chem 1:54–57

    Google Scholar 

  • Terra WR, Ferriera C (2012) Biochemistry of digestion. In: Li Gilbert (ed) Insect molecular biology and biochemistry. Elsevier, New York, USA, pp 365–418

    Chapter  Google Scholar 

  • Thangaraj P, Neelamegam RK, Nagarajan K, Muthukalingan K (2018) Interaction of azadirachtin with the lipid-binding domain: Suppression of lipid transportation in the silkworm, Bombyx mori. Pestic Biochem Physiol 152:62–68

    Article  CAS  PubMed  Google Scholar 

  • Veda VT, Srinivasan D, Sengottuvelu S (2012) Wound healing potential of Melia azedarach L. leaves in alloxan induced diabetic rats. Global J Res Med Plants Indig Med 1:265–271

    Google Scholar 

  • Wilkinson CF (1976) Insecticide biochemistry and physiology. Plenum, New York, USA, p 753

    Book  Google Scholar 

  • Zera AJ, Zhao Z (2004) Effect of a juvenile hormone analogue on lipid metabolism in a wing-polymorphic cricket: implications for the endocrine-biochemical bases of life-history trade-offs. Physiol Biochem Zool 77:255–266

    Article  CAS  PubMed  Google Scholar 

  • Zibaee A, Zibaee I, Sendi JJ (2011) A juvenile hormone analog, pyriproxyfen, affects some biochemical components in the hemolymph and fat bodies of Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Pestic Biochem Physiol 100:289–298

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Asmaa Metwaly, Lecturer in the Department of Zoology and Entomology, Faculty of Science, Assiut University, Egypt, for preparing the figures.

Author information

Authors and Affiliations

Authors

Contributions

EHS conceived and designed the research and wrote the manuscript. TAE conducted the experiments and statistics. AHS participated in data analysis. All authors read and approved the manuscript.

Corresponding author

Correspondence to El-Sayed H. Shaurub.

Ethics declarations

Conflicts of interest

No conflicts of interest are reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaurub, ES.H., El-Sheikh, T.A. & Shukshuk, A.H. Insect growth regulators and chinaberry (Melia azedarach) fruit acetone extract disrupt intermediary metabolism and alter immunocyte profile in Agrotis ipsilon larvae. Int J Trop Insect Sci 42, 2203–2213 (2022). https://doi.org/10.1007/s42690-022-00741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-022-00741-6

Keywords

Navigation