Skip to main content
Log in

Influence of transition metals on Streptomyces coelicolor and S. sioyaensis and generation of chromate-reducing mutants

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Bacteria-assisted bioremediation is widely recognized as a low-cost method to minimize the consequences of soil pollution with toxic metals originating from industrial sites. Strains used in bioremediation have to deal with high metal load via biosorption, reduction, bioprecipitation, metal sequestration, and/or chelation. Actinobacteria, and streptomycetes in particular, are considered a perspective group for bioremediation as natural soil inhabitants with extensive secondary metabolism. Nevertheless, there is no reference information on survival of the model streptomycetes in the presence of the most abundant metal pollutants. Also, there are no reports describing the selection approaches towards improvement of bioremediation properties. In this work, the resistance of Streptomyces coelicolor M145 and Streptomyces sioyaensis Lv81 to certain transition metals and their growth under different pH values are described for the first time. Spontaneous chromate-resistant S. sioyaensis Lv81-138 strain was selected in the course of this work. Strain Lv81-138 is the most efficient actinobacterial Cr(VI) reducer reported so far, capable of converting 12 mmol/L of Cr(VI) into Cr(III) in a medium supplemented with 50 mmol/L K2CrO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbas AS, Edwards C (1990) Effects of metals on Streptomyces coelicolor growth and actinorhodin production. Appl Environ Microbiol 56:675–680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abbas A, Edwards C (1989) Effects of metals on a range of Streptomyces species. Appl Environ Microbiol 55:2030–2035

    CAS  PubMed Central  PubMed  Google Scholar 

  • Addour L, Belhocine D, Boudries N, Comeau Y, Pauss A, Mameri N (1999) Zinc uptake by Streptomyces rimosus biomass using a packed-bed column. J Chem Technol Biotechnol 74:1089–1095

    Article  CAS  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Terraga A-M et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A(3)2. Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Brofft JE, McArthur JV, Shimkets LJ (2002) Recovery of novel bacterial diversity from a forested wetland impacted by reject coal. Environ Microbiol 4:764–769

    Article  CAS  PubMed  Google Scholar 

  • Dávila Costa JS, Kothe E, Abate CM, Amoroso MJ (2012) Unraveling the Amycolatopsis tucumanensis copper-resistome. Biometals 25:905–917

    Article  PubMed  Google Scholar 

  • Fernandez PM, Figueroa LIC, Farina JI (2010) Critical influence of culture medium and Cr(III) quantification protocols on the interpretation of Cr(VI) bioremediation by environmental fungal isolates. Water Air Soil Pollut 206:283–293

    Article  CAS  Google Scholar 

  • Haferburg G, Kothe E (2010) Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87:1271–1280

    Article  CAS  PubMed  Google Scholar 

  • Hesketh A, Kock H, Mootien S, Bibb M (2009) The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 74:1427–1444

    Article  CAS  PubMed  Google Scholar 

  • Hodgson DA (2000) Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238

    Article  CAS  PubMed  Google Scholar 

  • Javaid M, Sultan S (2012) Plant growth promotion traits and Cr (VI) reduction potentials of Cr (VI) resistant Streptomyces strains. J Bas Microbiol. doi:10.1002/jobm.201200032

    Google Scholar 

  • Johnson DB, Hallberg KB (2009) Carbon, iron and sulfur metabolism in acidophilic microorganisms. Adv Microbiol Physiol 54:201–255

    Article  CAS  Google Scholar 

  • Johnson DB, Macvicar JHM, Rolfe S (1987) A new solid medium for the isolation and enumeration of Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria. J Microbiol Meth 7:9–18

    Article  Google Scholar 

  • Kontro M, Lignell U, Hirvonen MR, Nevalainen A (2005) pH effects on 10 Streptomyces spp. growth and sporulation depend on nutrients. Lett Appl Microbiol 41:32–38

    Article  CAS  PubMed  Google Scholar 

  • Kothe E, Dimkpa C, Haferburg G, Schmidt A, Schütze E (2010) Streptomycete heavy metal resistance: extracellular and intracellular mechanisms. Soil Biology. Soil Heavy Met 19:225–235

    Article  CAS  Google Scholar 

  • Mabrouk Mona EM (2008) Statistical optimization of medium components for chromate reduction by halophilic Streptomyces sp. MS-2. Afr J Microbiol Res 2:103–109

    Google Scholar 

  • Margesin R, Płaza GA, Kasenbacher S (2011) Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere 82:1583–1588

    Article  CAS  PubMed  Google Scholar 

  • Morales DK, Ocampo W, Zambrano MM (2007) Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure. J Appl Microbiol 103:2704–2712

    Article  CAS  PubMed  Google Scholar 

  • Myronovskyy M, Ostash B, Ostash I, Fedorenko V (2009) A gene cloning system for the siomycin producer Streptomyces sioyaensis NRRL-B5408. Folia Microbiol 54:91–96

    Article  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2010) Chromate reductase activity in Streptomyces sp. MC1. J Gen Appl Microbiol 56:11–18

    Article  CAS  PubMed  Google Scholar 

  • Sagar S, Dwivedi A, Yadav S, Tripathi M, Kaistha SD (2012) Hexavalent chromium reduction and plant growth promotion by Staphylococcus arlettae strain Cr11. Chemosphere 86:847–852

    Article  CAS  PubMed  Google Scholar 

  • Sahmoune MN, Louhab K, Adda J (2008) Chromium biosorption by waste biomass of Streptomyces rimosus generated from the antibiotic industry. J Appl Sci Res 4:1076–1082

    CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Summers AO (2009) Damage control: regulating defenses against toxic metals and metalloids. Curr Opin Microbiol 12:138–144

    Article  CAS  PubMed  Google Scholar 

  • Voelker F, Altaba S (2001) Nitrogen source governs the patterns of growth and pristinamycin production in ‘Streptomyces pristinaespiralis’. Microbiology 147:2447–2459

    CAS  PubMed  Google Scholar 

  • Zakaliukina IV, Zenova GM, Zviagintsev DG (2004) Growth and morphological differentiation of acidophilic and neutrophilic soil Streptomyces. Mikrobiologiia 73:89–93

    PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by grant Bg-97P from the Ministry of Education and Science of Ukraine (to VF) and DAAD fellowships to TG, BO, and YH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Fedorenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 416 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gren, T., Ostash, B., Hrubskyy, Y. et al. Influence of transition metals on Streptomyces coelicolor and S. sioyaensis and generation of chromate-reducing mutants. Folia Microbiol 59, 147–153 (2014). https://doi.org/10.1007/s12223-013-0277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-013-0277-z

Keywords

Navigation