Skip to main content
Log in

Bioconversion of acrylonitrile to acrylamide using polyacrylamide entrapped cells of Rhodococcus rhodochrous PA-34

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The nitrile hydratase (NHase) of Rhodococcus rhodochrous PA-34 catalyzed the conversion of acrylonitrile to acrylamide. The resting cells (having NHase activity) (8 %; 1 mL corresponds to 22 mg dry cell mass, DCM) were immobilized in polyacrylamide gel containing 12.5 % acrylamide, 0.6 % bisacrylamide, 0.2 % diammonium persulfate and 0.4 % TEMED. The polyacrylamide entrapped cells (1.12 mg DCM/mL) completely converted acrylonitrile in 3 h at 10 °C, using 0.1 mol/L potassium phosphate buffer. In a partitioned fed batch reactor, 432 g/L acrylamide was accumulated after 1 d. The polyacrylamide discs were recycled up to 3×; 405, 210 and 170 g/L acrylamide was produced in 1st, 2nd and 3rd recycling reactions. In four cycles, a total of 1217 g acrylamide was produced by recycling the same mass of entrapped cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCM:

dry cell mass

NHase(s):

nitrile hydratase(s)

PAA:

polyacrylamide

PPB:

potassium phosphate buffer

PVA:

polyvinyl alcohol

TEMED:

N,N,N′,N′-tetramethylethylenediamine

References

  • Bernet N., Thiery A., Maestracci M., Arnaud A., Rios G.M., Galzy P.: Continuous immobilized cell reactor for amide hydrolysis. J.Ind.Microbiol.2, 129–136 (1987).

    Article  CAS  Google Scholar 

  • Bhalla T.C., Miura A., Wakamoto A., Ohba Y., Furuhashi K.: Asymmetric hydrolysis of α-aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34. Appl.Microbiol.Biotechnol.37, 184–190 (1992).

    Article  CAS  Google Scholar 

  • Cantarella M., Spera A., Leonetti P., Alfani F.: Influence of initial glucose concentration on nitrile hydratase production in Brevibacterium imperialis CBS 498-74. J.Mol.Catal.B Enzym.19-20, 405–414 (2002).

    Article  CAS  Google Scholar 

  • Chang N.H., Choi K.S., Lee C.Y.: Bench scale production of acrylamide using resting cells of Brevibacterium sp. CH2 in a fed batch reactor. Enzyme Microb.Technol.15, 979–984 (1993).

    Article  PubMed  Google Scholar 

  • Chaplin M.F., Bucke C.: Enzyme Technology. Cambridge University Press (UK) 1990.

  • Fradet H., Arnaud A., Rios G., Galzy P.: Hydration of nitriles using a bacterial nitrile hydratase immobilized on DEAE-cellulose. Biotechnol.Bioeng.27, 1581–1585 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Hijort C.M., Godtfredsen S.E., Emborg C.: Isolation and characterization of nitrile hydratase from Rhodococcus sp. J.Chem.Technol. Biotechnol. 48, 217–226 (1990).

    Article  Google Scholar 

  • Jallageas J.C., Arnaud A., Galzy P.: Bioconversion of nitriles and their applications. Adv.Biochem.Eng.14, 1–32 (1980).

    Article  CAS  Google Scholar 

  • Kierstan M.P.J., Coughlan M.P.: Immobilization of cells and enzymes by gel entrapment, pp. 43–45 in Immobilized Cells and Enzymes (J. Woodward, Ed.). IRL Press, Oxford (UK) 1985.

    Google Scholar 

  • Kim S.H., Padamkumar P., Oriel P.: Cobalt activation of Bacillus BR 449 nitrile hydratase expressed in E. coli. Appl.Biochem.Biotechnol.93, 597–603 (2001).

    Article  Google Scholar 

  • Kobayashi M., Nagasawa T., Yamada H.: Nitrilase of Rhodococcus rhodochrous J1 — purification and characterization. Eur.J.Biochem.182, 349–356 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Lee C.Y., Hwang Y.B., Chang H.N.: Acrylonitrile adaptation of Brevibacterium sp. CH1 for acrylamide production. Enzyme Microb. Technol.13, 53–58 (1991).

    Article  CAS  Google Scholar 

  • Mark H.F., Gaylord G.N., Bikales N.M.: Acrylamide: Encyclopedia of Polymer Science and Technology, Vol. 1, pp. 177–195. Interscience Publishers 1962.

  • Mitsubishi R.: Enzymatic production of acrylamide, pp. 71–75 in The Application of Biotechnology to Industrial Sustainability. OECD (France) 2001.

  • Nagasawa T., Takeuchi K., Yamada H.: Occurrence of a cobalt-induced and cobalt-containing nitrile hydratase in Rhodococcus rhodochrous J1. Biochem.Biophys.Res.Commun.155, 1008–1016 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa T., Takeuchi K., Nardidei V., Mihara Y., Yamada H.: Optimum culture conditions for the production of cobalt-containing nitrile hydratase by Rhodococcus rhodochrous J1. Appl.Microbiol.Biotechnol.34, 783–788 (1991).

    Article  CAS  Google Scholar 

  • Nagasawa T., Shimizu H., Yamada H.: The superiority of the third-generation catalyst Rhodococcus rhodochrous J1 nitrile hydratase for industrial production of acrylamide. Appl.Microbiol.Biotechnol.40, 189–195 (1993).

    Article  CAS  Google Scholar 

  • Precigou S., Wieser M., Pommares P., Goulas P., Duran R.: Rhodococcus pyridinovorans MW 3, a bacterium producing a nitrile hydratase. Biotechnol.Lett.26, 1379–1384 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Raj J., Prasad S., Bhalla T.C.: Rhodococcus rhodochrous PA-34, a potential catalyst for acrylamide synthesis. Process Biochem.41, 1359–1363 (2006).

    Article  CAS  Google Scholar 

  • Raj J., Seth A., Prasad S., Bhalla T.C.: Bioconversion of butyronitrile to butyramide using whole cells of Rhodococcus rhodochrous PA-34. Appl.Microbiol.Biotechnol.74, 535–539 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Raj J., Sharma N.N., Prasad S., Bhalla T.C.: Acrylamide synthesis using agar entrapped cells of Rhodococcus rhodochrous PA-34 in a partitioned fed batch reactor. J.Industr.Microbiol.Technol.35, 35–40 (2008).

    Article  CAS  Google Scholar 

  • Ramakrishna C., Desai J.D.: Bioconversion of acrylonitrile to acrylamide by Arthrobacter sp. IPCB-3. Indian J.Exp.Biol.31, 173–177 (1993).

    CAS  Google Scholar 

  • Ramakrishna C., Dave H., Ravindranathan M.: Microbial metabolism of nitriles and its biotechnological potential. J.Sci.Ind.Res.58, 925–947 (1999).

    CAS  Google Scholar 

  • Sankhian U.D., Kumar H., Chand D., Kumar D., Bhalla T.C.: Nitrile hydratase of Rhodococcus rhodochrous NHB-2: optimization of conditions for production of enzyme and conversion of acrylonitrile to acrylamide. Asian J.Microbiol.Biotech.Env. Sci.5, 217–223 (2003).

    CAS  Google Scholar 

  • Watanabe I., Satoh Y., Enomoto K., Seki S., Sakashita K.: Optimal conditions for cultivation of Rhodococcus sp. N-774 and for conversion of acrylonitrile to acrylamide by resting cells. Agric.Biol.Chem.51, 3201–3206 (1987).

    CAS  Google Scholar 

  • Yamada H., Ryuno K., Nagasawa T., Enomoto K., Watanabe I.: Optimum culture conditions for production by Pseudomonas chloraraphis B23 of nitrile hydratase. Agric.Biol.Chem.50, 2859–2865 (1986).

    CAS  Google Scholar 

  • Yamada H., Kobayashi M.: Nitrile hydratase and its application to industrial production of acrylamide. Biosci.Biotech.Biochem.60, 1391–1400 (1996).

    Article  CAS  Google Scholar 

  • Youn K.B., Hwan H.G.: Production of acrylamide using immobilized cells of Rhodococcus rhodochrous M33. Biotechnol.Bioprocess. Eng.7, 194–200 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Bhalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, J., Prasad, S., Sharma, N.N. et al. Bioconversion of acrylonitrile to acrylamide using polyacrylamide entrapped cells of Rhodococcus rhodochrous PA-34. Folia Microbiol 55, 442–446 (2010). https://doi.org/10.1007/s12223-010-0074-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0074-x

Keywords

Navigation