Skip to main content
Log in

Automatic formation of hypotheses on the relationships between structure of naphthalene analogs and bioluminescence response of bioreporter Pseudomonas fluorescens HK44

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Seven hypotheses on relationships between the structure of naphthalene analogs and bioluminescence response of bioreporter Pseudomonas fluorescens were formulated using GUHA (General Unary Hypotheses Automaton) on a training set of 37 compounds. Prediction of bioluminescence response of 12 new naphthalene analogs was successful in 69 % cases and resulted in rejection of single hypothesis. The results demonstrate applicability of GUHA in structure-activity research, especially for qualitative data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Faq:

Fisher association quantifier

ff-table:

four-fold table

Fimpl:

founded implication quantifier

GUHA:

general unary hypotheses automaton

nah :

genes of naphthalene degradation pathway

P.f. :

Pseudomonas fluorescens

(Q)SAR:

(quantitative) structure-activity relationship

RBL:

relative bioluminescence

References

  • Adibpour N., Khalaj A., Rezaee S., Daneshtalab M.: In vitro antifungal activity of 2-(4-substituted phenyl)-3(2H)-isothiazolones. Folia Microbiol. 52, 573–576 (2007).

    Article  CAS  Google Scholar 

  • Alvarez M.A., Debattista N.B., Pappano N.B.: Antimicrobial activity and synergism of some substituted flavonoids. Folia Microbiol.53, 23–28 (2008).

    Article  CAS  Google Scholar 

  • Bestetti G., Di Gennaro P., Galli E., Leoni B., Pelizzoni F., Sello G., Bianchi D.: Bioconversion of substituted naphthalenes to the corresponding salicylic acids. Appl.Microbiol.Biotechnol.40, 791–793 (1994).

    Article  CAS  Google Scholar 

  • Bestetti G., Bianchi D., Bosetti A., Di Gennaro P., Galli E., Leoni B., Pelizzoni F., Sello G.: Bioconversion of substituted naphthalenes to the corresponding 1,2-dihydro-1,2-dihydroxy derivates. Determination of the regio- and stereochemistry of the oxidation reactions. Appl.Microbiol.Biotechnol.44, 306–313 (1995).

    Article  CAS  Google Scholar 

  • Hájek P., Havránek T.: Mechanizing Hypothesis Formation — Mathematical Foundations for a General Theory. Springer-Verlag, Berlin 1978.

    Google Scholar 

  • Hájek P., Sochorová A., Zvárová J.: GUHA for personal computers. Comp.Stat.Data Anal.19, 149–153 (1995).

    Article  Google Scholar 

  • Hálová J., Štrouf O., Žák P., Sochorová A., Uchida N., Okimoto H., Yuzuri T., Sakakibara K., Hirota M.: Computer aided hypotheses based drug discovery using CATALYSTRTM and PC GUHA software systems (a case study of catechol analogs against malignant melanoma), pp. 447–448 in S. Arikawa, H. Motoda (Eds): Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin 1998a.

    Google Scholar 

  • Hálová J., Štrouf O., Žák P., Sochorová A., Uchida N., Yuzuri T., Sakakibara K., Hirota M.: QSAR of catechol analogs against malignant melanoma using fingerprint descriptors. Quant.Struct.-Act.Relat.17, 37–39 (1998b).

    Article  Google Scholar 

  • Hálová J., Žák P., Stopka P., Yuzuri T., Abe Y., Sakakibara K., Suezawa H., Hirota M.: Structure-sweetness relationships of aspartame derivates by GUHA, pp. 291–296 in S. Lange, K. Satoh, C.H. Smith (Eds): Lecture Notes in Computer Science. Springer-Verlag, Berlin 2002.

    Google Scholar 

  • Heitzer A., Webb O.F., Thonnard J.E., Sayler G.S.: Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminiscent catabolic reporter bacterium. Appl.Environ.Microbiol.58, 1839–1846 (1992).

    CAS  PubMed  Google Scholar 

  • Heitzer A., Malachowsky K., Thonnard J.E., Bienkowski P.R., White D.C., Sayler G.S.: Optical biosensor for environmental on-line monitoring of naphthalene and salicylate with an immobilized bioluminescent catabolic reporter bacterium. Appl. Environ.Microbiol.60, 1487–1494 (1994).

    CAS  PubMed  Google Scholar 

  • Kizilcikli İ., Kurt Y.D., Akkurt B., Genel A.Y., Birteksöz S., Ötük G., Ülküseven B.: Antimicrobial activity of a series of thiosemicarbazones and their ZnII and PdII complexes. Folia Microbiol.52, 15–25 (2007).

    Article  CAS  Google Scholar 

  • Pařík P., Ludwig M.: Acid-base properties of substituted naphthoic acids in nonaqueous media. Collect.Czech.Chem.Commun.62, 1737–1746 (1997).

    Article  Google Scholar 

  • Pařík P., Wolfová J., Ludwig M.: Dissociation of naphthoic acids in non-aqueous media. Comparison of benzene and naphthalene skeletons. Collect.Czech.Chem.Commun.65, 385–394 (2000).

    Article  Google Scholar 

  • Park W., Jeon C.O., Madsen E.L.: Interaction of NahR, a LysR-type transcriptional regulator, with the α-subunit of RNA polymerase in the naphthalene degrading bacterium Pseudomonas putida NCIB 9816-4. FEMS Microbiol.Lett.213, 159–165 (2002).

    CAS  PubMed  Google Scholar 

  • Ren S., Frymier P.D.: Estimating the toxicities of organic chemicals to bioluminescent bacteria and activated sludge. Water Res.36, 4406–4414 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Ripp S., Nivens D.E., Ahn Y., Werner C., Jarrel I.V.J., Easter J.P., Cox C.D., Burlace R.S., Sayler G.S.: Control field release of a bioluminiscent genetically engineered microorganism for bioremediation process monitoring and control. Environ.Sci. Technol.34, 846–853 (2000).

    Article  CAS  Google Scholar 

  • Tetko I.V., Gasteiger J., Todeschini R., Mauri A., Livingstone D.J., Ertl P., Palyulin V.A., Radchenko E.V., Zefirov N.S., Makarenko A.S., Tanchuk V.YU., Prokopenko V.V.: Virtual computational chemistry laboratory — design and description. J.Comput.Aid.Mol.Des.19, 453–463 (2005).

    Article  CAS  Google Scholar 

  • Trögl J., Ripp S., Kuncová G., Sayler G.S., Churavá A., Pařík P., Demnerová K., Hálová J., Kubicová L.: Selectivity of whole cell optical biosensor with immobilized bioreporter Pseudomonas fluorescens HK44. Sens.Actuators B: Chem.107, 98–103 (2005).

    Article  Google Scholar 

  • Trögl J., Kuncová G., Kubicová L., Pařík P., Hálová J., Demnerová K., Ripp S., Sayler G.S.: Response of the bioluminescent bioreporter Pseudomonas fluorescens HK44 to analogs of naphthalene and salicylic acid. Folia Microbiol.52, 3–14 (2007).

    Article  Google Scholar 

  • Valdman E., Battaglini F., Leite S.G.F., Valdman B.: Naphthalene detection by a bioluminescence sensor applied to wastewater samples. Sens.Actuators B: Chem.103, 7–12 (2004).

    Article  Google Scholar 

  • Žák P., Hálová J.: Mutagenes discovery using PC GUHA software system, pp. 369–370 in S. Arikawa, K. Furukawa (Eds): Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Trögl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trögl, J., Hálová, J., Kuncová, G. et al. Automatic formation of hypotheses on the relationships between structure of naphthalene analogs and bioluminescence response of bioreporter Pseudomonas fluorescens HK44. Folia Microbiol 55, 411–417 (2010). https://doi.org/10.1007/s12223-010-0069-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0069-7

Keywords

Navigation