Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1425))

Abstract

In this chapter, we introduce the basis of computational chemistry and discuss how computational methods have been extended to some biological properties and toxicology, in particular. Since about 20 years, chemical experimentation is more and more replaced by modeling and virtual experimentation, using a large core of mathematics, chemistry, physics, and algorithms. Then we see how animal experiments, aimed at providing a standardized result about a biological property, can be mimicked by new in silico methods. Our emphasis here is on toxicology and on predicting properties through chemical structures. Two main streams of such models are available: models that consider the whole molecular structure to predict a value, namely QSAR (Quantitative Structure Activity Relationships), and models that find relevant substructures to predict a class, namely SAR. The term in silico discovery is applied to chemical design, to computational toxicology, and to drug discovery. We discuss how the experimental practice in biological science is moving more and more toward modeling and simulation. Such virtual experiments confirm hypotheses, provide data for regulation, and help in designing new chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown N (2009) Chemoinformatics—an introduction for computer scientists. ACM Comput Surv 41(2), 8

    Article  Google Scholar 

  2. Gasteiger J, Engel T (eds) (2003) Chemoinformatics: a textbook. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  3. Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996

    Article  CAS  Google Scholar 

  4. Balaban AT (1985) Applications of graph theory in chemistry. J Chem Inf Comput Sci 25:334–343

    Article  CAS  Google Scholar 

  5. Weininger D (1988) Smiles a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36

    Article  CAS  Google Scholar 

  6. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci 29:97–101

    Article  CAS  Google Scholar 

  7. Adam D (2002) Chemists synthesize a single naming system. Nature 417:369

    Article  CAS  PubMed  Google Scholar 

  8. Schlick T (2002) Molecular modeling and simulation: an interdisciplinary guide. Springer-Verlag, New York

    Book  Google Scholar 

  9. Chow PHK, Ng RTH, Ogden BE (eds) (2008) Using animal model in biomedical research, 1st edn. World Scientific Publishing, Singapore

    Google Scholar 

  10. Benfenati E, Gini G (1997) Computational predictive programs (expert systems) in toxicology. Toxicology 119:213–225

    Article  CAS  PubMed  Google Scholar 

  11. Hartung T (2009) Toxicology for the twenty-first century. Nature 460(9):208–212

    Article  CAS  PubMed  Google Scholar 

  12. Livingstone DJ (2000) The characterization of chemical structures using molecular properties. A survey. J Chem Inf Comput Sci 40:195–209

    Article  CAS  PubMed  Google Scholar 

  13. Hansch C, Malony PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with hammett substituent constants with partition coefficients. Nature 194:178–180

    Article  CAS  Google Scholar 

  14. Ghose AK, Crippen GM (1986) Atomic physicochemical parameters for three-dimensional structure directed quantitative structure-activity relationships. I Partition coefficients as a measure of hydrophobicity. J Comput Chem 7:565–577

    Article  CAS  Google Scholar 

  15. Kubinyi H (2002) From narcosis to hyperspace: the history of QSAR. Quant Struct-Act Relat 21:348–356

    Article  CAS  Google Scholar 

  16. Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  17. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction. Springer-Verlag, New York, NY

    Book  Google Scholar 

  18. Gini G, Katritzky A (eds) (1999) Predictive toxicology of chemicals: experiences and impact of artificial intelligence tools. Proc. AAAI Spring symposium on predictive toxicology, report SS-99-01. AAAI Press, Menlo Park, CA

    Google Scholar 

  19. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276

    Article  CAS  PubMed  Google Scholar 

  20. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67

    Article  Google Scholar 

  21. Ashby J (1985) Fundamental SAs to potential carcinogenicity or noncarcinogenicity. Environ Mutagen 7:919–921

    Article  CAS  PubMed  Google Scholar 

  22. Ferrari T, Cattaneo D, Gini G, Golbamaki N, Manganaro A, Benfenati E (2013) Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction. SAR QSAR Environ Res 24(5):365–383

    Article  CAS  PubMed  Google Scholar 

  23. Jackson P (1999) Introduction to expert systems, 3rd edn. Addison Wesley Longman, Boston, MA

    Google Scholar 

  24. Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kauffman, San Francisco, CA

    Google Scholar 

  25. Neagu C-D, Gini G (2003) Neuro-Fuzzy knowledge integration applied to toxicity prediction, chapter 12. In: Jain R, Abraham A, Faucher C, Jan van der Zwaag B (eds) Innovations in knowledge engineering. Advanced Knowledge International Pty Ltd, Magill, South Australia, pp 311–342

    Google Scholar 

  26. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Google Scholar 

  27. Kittler JM, Hatef R, Duin R, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239

    Article  Google Scholar 

  28. Gini G, Lorenzini M, Benfenati E, Brambilla R, Malvé L (2001) Mixing a symbolic and a subsymbolic expert to improve carcinogenicity prediction of aromatic compounds, LNCS 2096. Springer-Verlag, New York

    Google Scholar 

  29. Gini G, Craciun M, Koening C, Benfenati E (2004) Combining unsupervised and supervised artificial neural networks to predict aquatic toxicity. J Chem Inf Comput Sci 44(6):1897–1902

    Article  CAS  PubMed  Google Scholar 

  30. Friedman J (1997) On bias, variance, 0/1 loss and the curse of dimensionality. Data Min Knowl Discov 1:55–77

    Article  Google Scholar 

  31. Gini G, Benfenati E (2007) e-modelling: foundations and cases for applying AI to life sciences. Int J Artif Intell Tools 16(2):243–268

    Article  Google Scholar 

  32. Breiman L (2001) Statistical modelling: the two cultures. Stat Sci 16(3):199–231

    Article  Google Scholar 

  33. Gini G, Franchi AM, Manganaro A, Golbamaki A, Benfenati E (2014) ToxRead: a tool to assist in read across and its use to assess mutagenicity of chemicals. SAR QSAR Environ Res 25(12):1–13

    Article  Google Scholar 

  34. Kalisch M, Mächler M, Colombo D, Maathuis MH, Bühlmann P (2012) Causal inference using graphical models with the R Package pcalg. J Stat Softw 47(11):1–26

    Article  Google Scholar 

  35. Benfenati E, Gini G, Hoffmann S, Luttik R (2010) Comparing in vivo, in vitro and in silico methods and integrated strategies for chemical assessment: problems and prospects. ATLA Altern Lab Anim 38(2):153–166

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We kindly acknowledge the EU Life + projects CALEIDOS and PROSIL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Gini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gini, G. (2016). QSAR Methods. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 1425. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3609-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3609-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3607-6

  • Online ISBN: 978-1-4939-3609-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics