Skip to main content
Log in

J774 macrophage-like cell line cytokine and chemokine patterns are modulated by Francisella tularensis LVS strain infection

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Mutual interactions were investigated between intracellular parasitic bacterium Francisella tularensis (F.t.; highly virulent bacterium responsible for tularemia, replicating within the host macrophages) and murine macrophage-like cell line J774. Recombinant murine lymphokine INF-γ and/or LPS derived from E. coli were determined to stimulate in vitro antimicrobial activity of macrophage-like J774 cell line against the live vaccine strain (LVS) of F.t. through their ability to produce proinflammatory cytokines and chemokines. F.t. infection up-regulated IL-12 p40 production and down-regulated TNF-α production by stimulated macrophages; on the other hand, F.t. infection did not affect the production of IL-8, IL-6, MCP-5, and RANTES by stimulated macrophages. This showed that F.t. infection modulates the cytokine synthesis by J774 macrophage cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

fetal bovine serum (bovine serum albumin)

CFU:

colony-forming units

DMEM:

Dulbecco’s modified Eagle medium

ELISA:

enzyme-linked immunosorbent assay

F.t. :

Francisella tularensis

FasL:

Fas ligand (chemokines)

IL:

interleukin

IL-12 p40:

IL-12 p40 subunit

LPS:

lipopolysaccharide

LVS:

live vaccine strain

MCP-5:

monocyte chemotactic protein 5

MIP 1α/β:

macrophage inflammatory protein

NFκB:

nuclear factor-κB

NK:

natural killer (cells)

PAMP(s):

pathogen-associated molecular pattern(s)

PBS:

phosphate-buffered saline

PRR(s):

pattern recognition receptor(s)

RANTES:

regulated upon activation, normal T cell expressed, and presumably secreted

TLR:

Toll-like receptors

TNF-α:

tumor necrosis factor α

References

  • Anthony L.S.D., Morrissey P.J., Nano F.E.: Growth inhibition of Francisella tularensis live vaccine strain by INF-γ-activated macrophages is mediated by reactive nitrogen intermediates derived from L-arginine metabolism. J.Immunol.148, 1829–1834 (1992).

    CAS  PubMed  Google Scholar 

  • Appay V., Rowland-Jones S.L.: RANTES: a versatile and controversial chemokine. Trends Immunol.22, 83–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  • van Coillie E., van Damme J., Opdenakker G.: The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev.10, 61–86 (1999).

    Article  PubMed  Google Scholar 

  • Colombo M.P., Trinchieri G.: Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev.13, 155–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Dinarello C.A.: Interleukin-18. Methods19, 121–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Duenas A.I., Aceves M., Orduna A., Díaz R., Crespo M.S., García-Rodríguez C.: Francisella tularensis LPS induces the production of cytokines in human monocytes and signals via Toll-like receptors 4 with much lower potency than E. coli LPS. Internat.Immunol.18, 785–795 (2006).

    Article  CAS  Google Scholar 

  • Fortier A.H., Polsinelli T., Green S.J., Nacy C.A.: Activation of macrophages for destruction of Francisella tularensis: identification of cytokines, effector cells, and effector molecules. Infect.Immun.60, 817–825 (1992).

    CAS  PubMed  Google Scholar 

  • Fortier A.H., Leiby D.A., Narayanan R.B., Asafoadjei E., Crawford R.M., Nacy C.A., Meltzer M.S.: Growth of Francisella tularensis LVS in macrophages: the acid intracellular compartment provides essential iron required for growth. Infect.Immun.63, 1478–1483 (1995).

    CAS  PubMed  Google Scholar 

  • van Furth R., van Dissel J.T.: Interferon gamma does not enhance the bactericidal activity of murine macrophages. Agents Actions26, 158–159 (1989).

    Article  PubMed  Google Scholar 

  • Golovliov I., Sandström G., Ericsson M., Sjöstedt A., Tärnvik A.: Cytokine expression in the liver during the early phase of murine tularemia. Infect.Immun.63, 534–538 (1995).

    CAS  PubMed  Google Scholar 

  • Golovliov I., Kuoppa K., Sjöstedt A., Tärnvik A., Sandström G.: Cytokine expression in the liver of mice infected with a highly virulent strain of Francisella tularensis. FEMS Immunol.Med.Microbiol.13, 239–244 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Golovliov I., Baranov V., Krocova Z., Kovarova H., Sjöstedt A.: An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect.Immun.71, 5940–5950 (2003a).

    Article  CAS  PubMed  Google Scholar 

  • Golovliov I., Sjöstedt A., Mokrievich A., Pavlov V.: A method for allelic replacement in Francisella tularensis. FEMS Microbiol. Lett.222, 273–280 (2003b).

    Article  CAS  PubMed  Google Scholar 

  • Hrstka R., Stulík J., Vojtěšek B.: The role of MAPK signaling pathway during Francisella tularensis LVS infection-induced apoptosis in murine macrophages. Microbes Infect.7, 619–625 (2005).

    CAS  PubMed  Google Scholar 

  • Hrstka R., Kročová Z., Černý J., Vojtěšek B., Macela A., Stulík J.: Francisella tularensis strain LVS resides in MHC II-positive autophagic vacuoles in macrophages. Folia Microbiol.52, 631–636 (2007).

    Article  CAS  Google Scholar 

  • Isherwood K.E., Titball R.W., Davies D.H., Felgner P.L., Morrow J.W.: Vaccination strategies for Francisella tularensis. Adv. Drug Deliv.Rev.57, 1403–1414 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Janovská S., Pávková I., Reichelová M., Hubálek M., Stulík J., Macela A.: Proteomic analysis of antibody response in a case of laboratory-acquired infection with Francisella tularensis subsp. tularensis. Folia Microbiol.52, 194–198 (2007).

    Article  Google Scholar 

  • Kmoníčková E., Zídek Z.: Quantitative aspects of lipopolysaccharide and cytokine requirements to generate nitric oxide in macrophages from LPS-hyporesponsive (Lpsd) C3H/HeJ mice. Folia Microbiol.49, 737–744 (2004).

    Article  Google Scholar 

  • Lachheb J., Chelbi H., Hamzaoui K., Hamzaoui A.: Association between RANTES polymorphisms and asthma severity among Tunisien children. Human Immunol.68, 675–680 (2007).

    Article  CAS  Google Scholar 

  • Lai X.H., Golovliov I., Sjöstedt A.: Francisella tularensis induced cytophatogenicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication. Infect.Immun.69, 4691–4694 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Loegering D.J., Drake J.R., Banas J.A., Mcnealy T.L., Mc Arthur D.G., Webster L.M., Lennartz M.R.: Francisella tularensis LVS growth in macrophages has reduced ability to stimulate the secretion of inflammatory cytokines by macrophages in vitro. Microb.Pathogen41, 218–225 (2006).

    Article  CAS  Google Scholar 

  • Majumdar S., Gupta R., Dogra N.: Interferon-γ- and lipopolysaccharide-induced tumor necrosis factor-α is required for nitric oxide production: tumor necrosis factor-α and nitric oxide are independently involved in the killing of Mycobacterium microti in interferon-γ- and lipopolysaccharide-treated J774A.1 cells. Folia Microbiol.45, 457–463 (2000).

    Article  CAS  Google Scholar 

  • Mittal J., Dobra N., Vohra H., Majumdar S.: Effects of prostaglandin E2 and nitric oxide inhibitors on the expression of interleukin-10, interleukin-12 and MHC class-II molecules in Mycobacterium microti-infected and interferon-γ-treated mouse peritoneal macrophages. Folia Microbiol.46, 259–264 (2001).

    Article  CAS  Google Scholar 

  • Moller A.S.W., Ovstenbo R., Haug K.B.F., Joo G.B., Westvik A.B., Kierulf P.: Chemokine production and pattern recognition receptor (PRR) expression in whole blood stimulated with pathogen-associated molecular patterns (PAMPs). Cytokine32, 304–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Murray H.W.: γ-Interferon, cytokine-induced macrophage activation, and antimicrobial host defense. Diagn.Microbiol.Infect.Dis.13, 411–421 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Pohanka M., Skládal P.: Piezoelectric immunosensor for the direct and rapid detection of Francisella tularensis. Folia Microbiol.52, 325–330 (2007).

    Article  CAS  Google Scholar 

  • Pohanka M., Skládal P.: Bacillus anthracis, Francisella tularensis and Yersinia pestis. The most important bacterial warfare agents — review. Folia Microbiol.54, 263–272 (2009).

    Article  CAS  Google Scholar 

  • Polsinelli T., Meltzer M.S., Fortier A.H.: Nitric oxide-independent killing of Francisella tularensis by IFN-γ-stimulated murine alveolar macrophages. J.Immunol.153, 1238–1245 (1994).

    CAS  PubMed  Google Scholar 

  • Reilly T.J., Felts R.L., Henzl M.T., Calcutt M.J., Tanner J.J.: Characterization of recombinant Francisella tularensis acid phosphatase A. Protein Exp.Purif.45, 132–141 (2006).

    Article  CAS  Google Scholar 

  • Schroder K., Hertzog P.J., Ravasi T., Hume D.A.: Interferon-γ: an overview of signals, mechanisms and functions. J.Leukoc.Biol.75, 163–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sjöstedt A.: Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen. Microb.Infect.8, 561–567 (2006).

    Article  Google Scholar 

  • Stenmark S., Sunnemark D., Bucht A., Sjöstedt A.: Rapid local expression of interleukin-12, tumor necrosis factor α, and γ interferon after cutaneous Francisella tularensis infection in tularemia-immune mice. Infect.Immun.67, 1789–1797 (1999).

    CAS  PubMed  Google Scholar 

  • Stuyt R.J.L., Kim S.H., Reznikov L.L., Fantuzzi G., Novick D., Rubinstein M., Kullberg B.J., van der Meer J.W.M., Dinarello C.H.A., Netea M.G.: Regulation of Staphylococcus-induced INF-γ in whole human blood: the role of endogenous IL-18, IL-12, IL-1, and TNF. Cytokine21, 65–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Telepnev M., Golovliov I., Grundström T., Tärnvik A., Sjörstedt A.: Francisella tularensis inhibits Toll-like receptor-mediated activation of intracellular signaling and secretion of TNF-α and IL-1 from murine macrophages. Cellular Microbiol.5, 41–51 (2003).

    Article  CAS  Google Scholar 

  • Telepnev M., Golovliov I., Sjöstedt A.: Francisella tularensis LVS initially activates but subsequently down-regulates intracellular signaling and cytokine secretion in mouse monocytic and human peripheral blood mononuclear cells. Microb.Pathogenesis38, 239–247 (2005).

    Article  CAS  Google Scholar 

  • Xing Z., Zganiacz A., Satosuosso M.: Role of IL-12 in macrophage activation during intracellular infection: IL-12 and mycobacteria synergistically release TNF-α and nitric oxide macrophages via IFN-γ induction. J.Leukoc.Biol.68, 897–902 (2000).

    CAS  PubMed  Google Scholar 

  • Zlotnik A., Yoshie O.: Chemokines: a new classification system and their role in immunity. Immunity12, 121–127 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Krejsek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holicka, M., Novosad, J., Kudlova, M. et al. J774 macrophage-like cell line cytokine and chemokine patterns are modulated by Francisella tularensis LVS strain infection. Folia Microbiol 55, 191–200 (2010). https://doi.org/10.1007/s12223-010-0028-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0028-3

Keywords

Navigation