Skip to main content
Log in

Biochemical and molecular characterization of δ-endotoxins in Bacillus thuringiensis

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The δ-endotoxins (δ-ETX) of four native strains (RT7, RT19, RT25, and RT25), and one reference strain (4L1) of Bacillus thuringiensis were biochemically and molecularly characterized to determine their potential toxic activity against lepidopteran larvae. Crystals of δ-ETX were purified through a two-phase system to determine their morphology, molar mass, solubility, and resistance to proteinases. Toxic activity and cry gene content were also determined. Crystals from native strains exhibited polyhedral, irregular and cuboidal shapes, while those from 4L1 were bipyramidal. Seven proteins with estimated molar mass ≈30–134 kDa were detected as the main components of the native δ-ETX. Only crystals from 4L1, RT24, and RT25 underwend complete solubilization at pH >12.0. Crystals from all strains produced trypsinresistant peptides. None of the cry genes associated with toxicity in lepidopterans (cry1, cry2, cry9) was found in the native strains; however, 4L1 strain harbors cry1 and cry2 genes. Strains RT19 and RT25 caused significant mortality against Trichoplusia ni larvae with partial solubilization at pH 10, strain 4L1 caused 100 % mortality. Toxicity of native strains may come from a novel cry gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAPS:

3-cyclohexylamino-1-propanesulfonic acid

δ-ETX(s):

δ-endotoxin(s)

ddH2O:

double-distilled water

dNTPs:

deoxynucleoside triphosphates

DTT:

1,4-dithithreitol

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  • Aronson A., Beckman W., Dunn P.: Bacillus thuringiensis and related insect pathogens. Microbiology50, 1–24 (1986).

    CAS  Google Scholar 

  • Aronson A.I., Han E.-S., Mcgaughey W., Johnson D.: The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl.Environ.Microbiol. 57, 981–986 (1991).

    CAS  PubMed  Google Scholar 

  • Baum J.A., Malvar T.: Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol.Microbiol. 18, 1–12 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Ben-Dov E., Wang Q., Zaritsky A., Manasherob R., Barak Z., Schneider B., Khamraev A., Baizhanov M., Glupov V., Margalith Y.: Multiplex PCR screening to detect cry9 genes in Bacillus thuringiensis strains. Appl.Environ.Microbiol. 65, 3714–3716 (1999).

    CAS  PubMed  Google Scholar 

  • Benintende G.B., López-Meza J.E., Cozzi J.G., Ibarra J.E.: Novel non-toxic isolates of Bacillus thuringiensis. Lett.Appl.Microbiol. 29, 151–155 (1999).

    Article  Google Scholar 

  • Bravo A.: Phylogenetic relationships of Bacillus thuringiensis δ-endotoxin family proteins and their functional domains. J.Bacteriol. 179, 2793–2801 (1997).

    CAS  PubMed  Google Scholar 

  • Bravo A., Sarabia S., López L., Ontiveros H., Abarca C., Ortiz A., Ortiz M., Lina L., Villalobos F.J., Peña G., Núñez-Valdez M.E., Soberón M., Quintero R.: Characterization of cry genes in a mexican Bacillus thuringiensis strain collection. Appl.Environ.Microbiol. 64, 4965–4972 (1998).

    CAS  PubMed  Google Scholar 

  • Denolf P., Jansens S., Peferoen M., Degheele D., Van Rie J.: Two different Bacillus thuringiensis δ-endotoxin receptor in the midgut brush border membrane of the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera:Pyralidae). Appl.Environ. Microbiol. 59, 1828–1837 (1993).

    CAS  PubMed  Google Scholar 

  • Du C., Martin P.A.W., Nickerson K.W.: Comparison of disulfide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis protein crystals. Appl.Environ.Microbiol. 60, 3847–3853 (1994).

    CAS  PubMed  Google Scholar 

  • Dulmage H.T., Correa J.A., Martinez A.J.: Coprecipitation with lactose as a means of recovering the spore-crystal complex of Bacillus thuringiensis. J.Invertebr.Pathol. 15, 15–20 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Larrea O.: Tecnologías de producción de Bacillus thuringiensis. Manejo Integr.Plagas Agroecol. 64, 110–115 (2002).

    Google Scholar 

  • Garczynski S.F., Crim J.W., Adang M.J.: Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis δ-endotoxin by protein blot analysis. Appl.Environ.Microbiol. 57, 2816–2820 (1991).

    CAS  PubMed  Google Scholar 

  • Higgins R.C., Dahmus M.E.: Rapid visualization of protein bands in preparative SDS-polyacrylamide gels. Analyt.Biochem. 93, 257–260 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Höfte H., Whiteley H.R.: Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol.Rev. 53, 242–255 (1989).

    PubMed  Google Scholar 

  • Konecka E., Kaznowski A., Ziemnicka J., Ziemnicki K., Paetz H.: Analysis of cry gene profiles in Bacillus thuringiensis strains isolated during epizootics in Cydia pomonella L. Curr.Microbiol. 55, 217–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  • López-Meza J.E., Ibarra J.E.: Characterization of a novel strain of Bacillus thuringiensis. Appl.Environ.Microbiol. 62, 1306–1310 (1996).

    PubMed  Google Scholar 

  • Naimov S., Boncheva R., Karlova R., Dukiandjiev S., Minkov I., de Maag R.A.: Solubilization, activation, and insecticidal activity of Bacillus thuringiensis serovar thompsoni HD542 crystal proteins. Appl.Environ.Microbiol. 74, 7145–7151 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Pang A.S.D., Gringorten J.L.: Degradation of Bacillus thuringiensis δ-endotoxin in host insect gut juice. FEMS Microbiol.Lett. 167, 281–285 (1998).

    CAS  Google Scholar 

  • Porcar M., Caballero P.: Diversidad genética de Bacillus thuringiensis, pp. 45–69 in P. Caballero, J. Ferre (Eds): Bioinsecticidas: Fundamentos y Aplicaciones de Bacillus thuringiensis en el Control Integrado de Plagas. Phytoma (España) 2001.

  • Porcar M., Juárez-Pérez V.: PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol.Rev. 26, 419–432 (2002).

    Article  Google Scholar 

  • Rosas-García N.M.: Elaboración de formulados de Bacillus thuringiensis var. kurstaki y determinación de la actividad toxica contra larvas de Diatraea saccharalis (Fabricius) (Lepidoptera:Pyralidae) en laboratorio y campo. DSc Thesis. FCB División de estudios de postgrado, UANL Monterrey, NL México 2002.

  • Rosas-García N.M., Mireles-Martínez M., Hernández-Mendoza J.L., Ibarra J.E.: Screening of cry gene contents of Bacillus thuringiensis strains isolated from avocado orchards in Mexico, and their insecticidal activity towards Argyrotaenia sp. (Lepidoptera:Tortricidae) larvae. J.Appl.Entomol. 104, 224–230 (2008).

    Google Scholar 

  • Rosas-García N.M., Villegas-Mendoza J.M., Torres-Ortega J.A.: Design of a Bacillus thuringiensis based formulation that increases feeding preference on Spodoptera exigua (Lepidoptera:Noctuidae) larvae. J.Econ.Entomol. 102, 58–63 (2009).

    Article  PubMed  Google Scholar 

  • Sacks L.E., Alderton G.: Behavior of bacterial spores in aqueous polymer two-phase systems. J.Bacteriol. 82, 331–341 (1961).

    CAS  PubMed  Google Scholar 

  • Sambrook J., Russell D.W.: Molecular Cloning, 3rd ed., Vol. 2. New York 2001.

  • Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D.H.: Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol.Mol.Biol.Rev. 62, 775–806 (1998).

    CAS  PubMed  Google Scholar 

  • Swiecicka I., Bideshi D.K., Federici B.A.: Novel isolate of Bacillus thuringiensis that produces a quasicuboidal crystal of Cry1Ab21 toxic to larva of Trichoplusia ni. Appl.Environ.Microbiol. 74, 923–930 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Thomas W.E., Ellar D.J.: Bacillus thuringiensis var. israelensis crystal δ-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J.Cell Sci. 60, 181–197 (1983).

    CAS  PubMed  Google Scholar 

  • Tran L.B., Vachon V., Schwartz J.-L., Laprade R.: Differential effects of pH on the pore-forming properties of Bacillus thuringiensis insecticidal crystal toxins. Appl.Environ.Microbiol. 67, 4488–4494 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Van Rie J., Jansens S., Häfte H., Degheele D., Van Mellaert H.: Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis δ-endotoxins. Appl.Environ.Microbiol. 56, 1378–1385 (1990).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Rosas-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosas-García, N.M., Sánchez-Varela, A. & Villegas-Mendoza, J.M. Biochemical and molecular characterization of δ-endotoxins in Bacillus thuringiensis . Folia Microbiol 54, 487–492 (2009). https://doi.org/10.1007/s12223-009-0069-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-009-0069-7

Keywords

Navigation