Skip to main content
Log in

Analysis of cry Gene Profiles in Bacillus Thuringiensis Strains Isolated During Epizootics in Cydia pomonella L.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The crystal morphology and the profiles of genes encoding protein toxins (Cry and Cyt) were analyzed in 12 Bacillus thuringiensis strains isolated during epizootics in laboratory culture lines of Cydia pomonella, 2 isolates cultured from Leucoma salicis larvae, and 9 reference strains. Epizootic isolates produced crystals of the same bipyramidal shape; however, they revealed a variety of number and type of cry genes. Genes cry1I, cry2Ab, and cry9B were the most frequently observed in epizootic strains. Gene cry1I was noted in of 50% epizootic isolates. Eighty-three percent of them harbored gene cry2Ab. Gene cry9B was found for 42% of strains isolated during epizootics. Three isolates showed the largest number of cry genes and their variety; hence, they were chosen for the toxicity assay of their crystals and spores on C. pomonella larvae. One of them had approximately sixfold higher insecticidal activity than the reference strain B. thuringiensis subsp. kurstaki BTK STANDARD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Literature Cited

  1. Aronson A (2002) Sporulation and δ-endotoxin syntesis by Bacillus thuringiensis. Cell Mol Life Sci 59:417–425

    Article  PubMed  CAS  Google Scholar 

  2. Beegle CC, Couch TL, Alls RT, Versoi PL, Lee BL (1986) Standarization of HD-1-S-1980: U.S. Standard for Assay of Lepidopterous-active Bacillus thuringiensis. Bull Entomol Soc Am 32:44–45

    Google Scholar 

  3. Ben-Dov E, Zaritsky A, Dahan E, Barak Z, Sinai R, Manasherob R, Khamraev A, Troitskaya E, Dubitsky A, Berezina N, Margalith Y (1997) Extended screening by PCR for seven cry–group genes from field-collected strains of Bacillus thuringiensis. Appl Environ Microbiol 63:4883–4890

    PubMed  CAS  Google Scholar 

  4. Ben-Dov E, Wang Q, Zaritsky A, Manasherob R, Barak Z, Schneider B, Khamraev A, Baizhanov M, Glupov V, Margalith Y (1999) Multiplex PCR screening to detect cry9 genes in Bacillus thuringiensis strains. Appl Environ Microbiol 65:3714–3716

    PubMed  CAS  Google Scholar 

  5. Bernhard K, Jarrett P, Meadows MJ, Ellis DJ, Roberts GM, Pauli S, Rodgers P, Burges HD (1997) Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insects pests. J Invert Pathol 70:59–68

    Article  Google Scholar 

  6. Boncheva R, Dukiandjiev S, Minkov I, de Maagd RA, Naimov S (2006) Activity of Bacillus thuringiensis δ-endotoxins against codling moth (Cydia pomonella L.) larvae. J Invert Pathol 92:84–87

    Article  CAS  Google Scholar 

  7. Bradley D, Harkey MA, Kim MK, Biever KD, Bauer LS (1995) The insecticidal CryIB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to Coleopteran and Lepidopteran larvae. J Invert Pathol 65:162–173

    Article  CAS  Google Scholar 

  8. Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos J, Peńa G, Nuńez-Valdez ME, Soberón M, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strains collection. Appl Environ Microbiol 64:4965–4972

    PubMed  CAS  Google Scholar 

  9. Brousseau R, Saint-Onge A, Prefontaine G, Masson L, Cabana J (1993) Arbitrary primer polymerase chain reaction, a powerful method to identification Bacillus thuringiensis serovars and strains. Appl Environ Microbiol 59:114–119

    PubMed  CAS  Google Scholar 

  10. Carozzi NB, Kramer VC, Warren GW, Evola S, Koziel MG (1991) Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl Environ Microbiol 57:3057–3061

    PubMed  CAS  Google Scholar 

  11. Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    PubMed  CAS  Google Scholar 

  12. Damgaard PH, Larsen HD, Hansen BM, Bresciani J, Jørgensen K (1996) Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett Appl Microbiol 23:146–150

    Article  PubMed  CAS  Google Scholar 

  13. de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433

    Article  PubMed  CAS  Google Scholar 

  14. Ellis RT, Stockhoff BA, Stamp L, Schnepf HE, Schwab GE, Knuth M, Russell J, Cardineau GA, Narva KE (2002) Novel Bacillus thuringiensis binary insecticidal crystal proteins active on western corn rootworm, Diabrotica virgifera virgifera LeConte. Appl Environ Microbiol 68:1137–1145

    Article  PubMed  CAS  Google Scholar 

  15. Finney DJ (1952) Probit analysis. Cambridge University Press, Cambridge

    Google Scholar 

  16. Garcia-Robles I, Sánchez J, Gruppe A, Martinez-Ramirez AC, Rausell C, Real MD, Bravo A (2001) Mode of action of Bacillus thuringiensis PS86Q3 strain in hymenopteran forest pests. Insect Biochem Mol Biol 31:849–856

    Article  PubMed  CAS  Google Scholar 

  17. Gough JM, Akhurst RJ, Ellar DJ, Kemp DH, Wijffels GL (2002) New isolates of Bacillus thuringiensis for control of livestock ectoparasites. Biol Control 28:179–189

    Article  Google Scholar 

  18. Guennelon G, Audemard H, Fremond JC, El Idrissi Ammari MA (1981) Progrés réalisés dans l’élevage permanent du Carpocapse (Laspeyresia pomonella L.) sur milieu artificiel. Agronomie 1:59–64

    Article  Google Scholar 

  19. Hughes PA, Stevens MM, Park HW, Federici BA, Dennis ES, Akhurst R (2005) Response of larval Chironomus tepperi (Diptera: Chironomidae) to individual Bacillus thuringiensis var. israelensis toxins and toxin mixtures. J Invert Pathol 88:34–39

    Article  CAS  Google Scholar 

  20. Hurley JM, Bulla LA, Andrews RE (1987) Purification of the mosquitocidal and cytolytic proteins of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 53:1316–1321

    PubMed  CAS  Google Scholar 

  21. Ibarra JE, del Rincón MC, Ordúz S, Noriega D, Benintende G, Monnerat R, Regis L, de Oliveira CMF, Lanz H, Rodriguez MH, Sánchez J, Peña G, Bravo A (2003) Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity different mosquito species. Appl Environ Microbiol 69:5269–5274

    Article  PubMed  CAS  Google Scholar 

  22. Jalali SK, Mohan KS, Singh SP, Manjunath TM, Lalitha Y (2004) Baseline-susceptibility of the old-world bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) populations from India to Bacillus thuringiensis Cry1Ac insecticidal protein. Crop Protect 23:53–59

    Article  CAS  Google Scholar 

  23. Juárez-Pérez VM, Ferrandis MD, Frutos R (1997) PCR-based approach for detection of novel Bacillus thuringiensis cry genes. Appl Environ Microbiol 63:2997–3002

    PubMed  Google Scholar 

  24. Konecka E, Kaznowski A, Ziemnicka J, Ziemnicki K (2007) Molecular and phenotypic characterisation of Bacillus thuringiensis isolated during epizootics in Cydia pomonella L. J Invert Pathol 94:56–63

    Article  CAS  Google Scholar 

  25. Kumar NS, Venkateswerlu G (1998) Endogenous protease-activated 66-kDa toxin from Bacillus thuringiensis subsp. kurstaki active against Spodoptera littoralis. FEMS Microbiol Lett 159:113–120

    Article  PubMed  CAS  Google Scholar 

  26. Lecadet MM, Frachon E, Cosmao Dumanoir V, Ripouteau H, Hamon S, Laurent P, Thiéry I (1999) Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 86:660–672

    Article  PubMed  CAS  Google Scholar 

  27. Martin PA, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442

    PubMed  CAS  Google Scholar 

  28. Masson L, Erlandson M, Puzstai-Carey M, Brousseau R, Juárez-Pérez VM, Frutos R (1998) A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strain. Appl Environ Microbiol 64:4782–4788

    PubMed  CAS  Google Scholar 

  29. Peyronmet O, Vachon V, Schwartz JL, Laprade R (2001) Ion channels induced in planar lipid bilayers by the Bacillus thuringiensis toxin Cry1Aa in the presence of gypsy moth (Lymantria dispar) brush border membrane. J Membr Biol 184:45–54

    Article  Google Scholar 

  30. Porcar M, Caballero P (2000) Molecular and insecticidal characterization of a Bacillus thuringiensis strain isolated during a natural epizootic. J Appl Microbiol 89:309–316

    Article  PubMed  CAS  Google Scholar 

  31. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  32. Schnepf HE, Lee S, Dojillo J, Burmeister P, Fencil K, Morera L, Nyaard L, Narva KE, Wolt JD (2005) Characterization of Cry34/Cry35 binary insecticidal proteins from diverse Bacillus thuringiensis strain collections. Appl Environ Microbiol 71:1765–1774

    Article  PubMed  CAS  Google Scholar 

  33. Smirnoff WA (1962) A staining method for differentiating spores, crystals, and cells of Bacillus thuringiensis (Berliner). J Insect Pathol 4:384–386

    Google Scholar 

  34. Weinzierl R, Henn T, Koehler PG (1998) Microbial insecticides. Available from http://www.edis.ifas.ufl.edu/IN081

  35. Zeigler DR (1999) Bacillus thuringiensis & Bacillus cereus. In Bacillus genetic stock center catalog of strains, Vol. 2, 7th edn, The Ohio State University, Columbus, Ohio. Available at: http://www.bgoc.org/catalogs/catpart2.pdf

  36. Zhong C, Ellar DJ, Bishop A, Johnson C, Lin S, Hart ER (2000) Characterization of a Bacillus thuringiensis δ-endotoxin which is toxic to insects in three orders. J Invert Pathol 76:131–139

    Article  CAS  Google Scholar 

  37. Ziemnicka J, Ziemnicki K (2001) Bacillus thuringiensis: an epizootic agent in laboratory cultures of Codling moth (Cydia pomonella L.). Prog Plant Protect 41:503–508 (in Polish)

    Google Scholar 

Download references

Acknowledgments

We thank Dr. A. Sierpińska and Dr. D. R. Zeigler for providing B. thuringiensis reference strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Kaznowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konecka, E., Kaznowski, A., Ziemnicka, J. et al. Analysis of cry Gene Profiles in Bacillus Thuringiensis Strains Isolated During Epizootics in Cydia pomonella L.. Curr Microbiol 55, 217–222 (2007). https://doi.org/10.1007/s00284-007-0085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-007-0085-2

Keywords

Navigation