Skip to main content
Log in

Vegetative survival of some wall and soil blue-green algae under stress conditions

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Lyngbya major (a wall alga), survived throughout year, maximally to >80 % at atmospheric temperature (AT) of 17–36 °C and relative humidity (RH) 60–100 % in rainy and spring seasons, but the survival was 43–64 % in winter when AT decreased to 5 °C and RH was 65–98 %, and 15–23 % in summer when AT reached 48 °C and RH was 23–60 %. All soil algae (Lyngbya birgei, Aphanothece pallida, Gloeocapsa atrata, Oscillatoria subbrevis, O. animalis) survived >90 % in rainy season when soil moisture content (SMC) was 89–100 %. Lowering of SMC to a minimum of 55 % in spring and 39 % in winter led L. birgei, O. subbrevis and O. animalis to survive from 75, 66, and 65 %, respectively, in spring and 12, 14, and 20 % in winter, and A. pallida and G. atrata not at all in both seasons. All soil algae did not survive in summer when SMC was 12–30 %. Myxosarcina burmensis survived only in rainy and spring seasons when pond water temperature (PWT) was 19–25 °C and 18–26 °C, respectively, and not in winter and summer when PWT was 2–14 °C and 25–36 °C, respectively. L. major and A. pallida survived almost equally well under both submerged and air-exposed conditions for 15 d but less if submerged for more time than air-exposed on moist soil surface, while L. birgei, G. atrata, O. subbrevis, and O. animalis survived submergence in liquid medium better and longer than air-exposure on moist soil surface. Pond alga M. burmensis survived submergence better than air-exposure, true to its aquatic habitat. All algae survived less and died without forming any resistant cells when exposed to physical and physiological water stress (imposed by growing them on highly agarized media or in salinized liquid media), light stress (at 0, 2 and 10 μmol m−2 s−1 light intensity) or following UV shock (0.96–3.84 kJ/m2). A. pallida and G. atrata cells did not divide on 8 % agarized solid media, in ≥0.3 mol/L salinized liquid media, and in darkness. The presence of sheath over L. major and L. birgei filament cells and mucilage cover over A. pallida and G. atrata cells protect them against physical desiccation to some extent but not against UV shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AT:

atmospheric temperature

RH:

relative humidity

BG11:

liquid BG11 medium

SMC:

soil moisture content

PWT:

pond water temperature

References

  • Adir N., Zer H., Shochat S., Ohad I.: Photoinhibition: a historical perspective. Photosynth.Res. 76, 343–370 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Agrawal S.C., Pal U.: Viability of dried cells or filaments, survivability and/or reproduction under water and light stress, and following heat and UV exposure in some blue-green and green algae. Folia Microbiol. 48, 501–509 (2003).

    Article  CAS  Google Scholar 

  • Agrawal S.C., Singh V.: Viability of dried vegetative trichomes, formation of akinetes and heterocysts and akinete germination in some blue-green algae under water stress. Folia Microbiol. 44, 411–418 (1999).

    Article  CAS  Google Scholar 

  • Agrawal S.C., Singh V.: Viability of dried cells, and survivability and reproduction under water stress, low light, heat and UV exposure in Chlorella vulgaris. Israel J.Plant Sci. 49, 27–32 (2001).

    Article  Google Scholar 

  • Agrawal S.C., Singh V.: Viability of dried filaments, survivability and reproduction under water stress and survivability following heat and UV exposure in Lyngbya martensiana, Oscillatoria agardhii, Nostoc calcicola, Hormidium fluitans, Spirogyra sp. and Vaucheria geminata. Folia Microbiol. 47, 61–67 (2002).

    Article  CAS  Google Scholar 

  • Barbiero R.P., Welch E.B.: Contribution of benthic blue-green algae recruitment to lake populations and phosphorus translocation. Freshwater Biol. 27, 249–260 (1992).

    Article  Google Scholar 

  • Branco C.C.Z., Branco L.H.Z., Moura M.O., Bertusso F.R.: The succession dynamics of a macroalgal community after a flood disturbance in a tropical stream from Sao Paulo state, Southeastern Brazil. L. Revista Brasil.Botan. 28, 267–275 (2005).

    Google Scholar 

  • Bristol-Roach B.M.: On the retention of vitality by algae from old stored soils. New Phytol. 18, 92–107 (1919).

    Article  Google Scholar 

  • Brown R.M. Jr., Larson D.A., Bold H.C.: Airborne algae: their abundance and heterogeneity. Science 143, 583–585 (1964).

    Article  PubMed  Google Scholar 

  • Caiola M.G., Billi D., Friedmann E.I.: Effect of desiccation on envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales). Eur.J.Phycol. 31, 97–105 (1996).

    Google Scholar 

  • Cameron R.E., Blank G.R.: Desert algae: soil crusts and diaphanous substrata as algal habitats. Jet Propulsion Laboratory Pasadena Tech.Rep. no. 32–971, pp. 1–45. Pasadena (USA) 1966.

  • Dembitsky V.M., Řezanka T.: Metabolites produced by nitrogen-fixing Nostoc species. Folia Microbiol. 50, 363–392 (2005).

    Article  CAS  Google Scholar 

  • Elliott J.A., Jones I.D., Thackeray S.J.: Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559, 401–411 (2006).

    Article  CAS  Google Scholar 

  • Erdmann N., Schiewer U.: Cell size changes as indicator of salt resistance of blue-green algae. Arch.Hydrobiol. 67(Suppl.), 431–439 (1984).

    Google Scholar 

  • Garcia-Pichel F., Castenholz R.W.: Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl.Environ.Microbiol. 59, 163–169 (1993).

    PubMed  CAS  Google Scholar 

  • Garcia-Pichel F., Sherry N.D., Castenholz R.W.: Evidence for an ultraviolet sunscreen role of the extracellular pigment sctonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem.Photobiol. 56, 17–23 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Geitler L.: Studien über das Haematochom und die Chromatophoren von Trentepohlia. Österr.Bot.Z. 73, 76–83 (1923).

    Article  Google Scholar 

  • Gupta S., Agrawal S.C.: Vegetative survival and reproduction under submerged and air-exposed conditions and vegetative survival as affected by salts, pesticides, and metals in aerial green alga Trentepohlia aurea. Folia Microbiol. 49, 37–40 (2004).

    Article  CAS  Google Scholar 

  • Gupta S., Agrawal S.C.: Survival of blue-green and green algae under stress conditions. Folia Microbiol. 51, 121–128 (2006a).

    Article  CAS  Google Scholar 

  • Gupta S., Agrawal S.C.: Motility in Oscillatoria salina as affected by different factors. Folia Microbiol. 51, 565–571 (2006b).

    Article  CAS  Google Scholar 

  • Gupta S., Agrawal S.C.: Survival and reproduction in some algae under stress conditions. Folia Microbiol. 52, 603–617 (2007a).

    Article  CAS  Google Scholar 

  • Gupta S., Agrawal S.C.: Survival and motility of diatoms Navicula grimmei and Nitzschia palea affected by some physical and chemical factors. Folia Microbiol. 52, 127–134 (2007b).

    Article  Google Scholar 

  • Harel Y., Ohad L., Kaplan A.: Activation of photosynthesis and respiration to photoinhibition in cyanobacteria within biological desert crust. Plant Physiol. 136, 3070–3079 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hof T., Fremy P.: On Myxophyceae living in strong brines. Rec.Trav.Bot.Neerland 30, 140–162 (1933).

    Google Scholar 

  • Holm-Hansen O.: Viability of lyophilized algae. Can.J.Bot. 42, 127–137 (1964).

    Article  Google Scholar 

  • Karandashova I.V., Elanskaya I.V.: Genetic control and mechanisms of salt and hyperosmotic stress resistance in cyanobacteria. Rus.J.Genet. 41, 1311–1321 (2005).

    Article  CAS  Google Scholar 

  • Krabs G., Wiencke C.: Effects of desiccation and irradiance during tidal cycles on the content of the mycosporine-like amino acids (MAAs) in Porphyra umbilicalis (L.) J. Ag. and Porphyra purpurea (Roth) C. Ag. Ber.Polar-und Meeresforsch. 484, 22–41 (2004).

    Google Scholar 

  • Lange O.L., Kidron G.J., Budel B., Meyer A., Kilian E., Abeliovich A.: Taxonomic composition and photosynthetic characteristics of the “biological soil crusts” covering sand dunes in the Western Neger desert. Funct.Ecol. 6, 519–527 (1992).

    Article  Google Scholar 

  • Lu C., Vonshak A.: Effects of salinity stress on photosystem II function in cyanobacteria Spirulina platensis cells. Physiol.Plant. 114, 405–413 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Moore G.T., Carter N.: Further studies on the subterranean algal flora of the Missouri Botanical Garden. Ann.Missouri Bot.Garden 13, 101–140 (1926).

    Article  Google Scholar 

  • Petersen J.B.: Studies on the biology and taxonomy of soil algae, pp. 1–180 in Dansk Botanisk Arkiv Bd. 8 (no. 9). Dansk Botanisk Forening, Copenhagen (Denmark) 1935.

    Google Scholar 

  • Řezanka T., Dembitsky V.M.: Metabolites produced by cyanobacteria belonging to several species of the family Nostocaceae. Folia Microbiol. 51, 159–182 (2006).

    Article  Google Scholar 

  • Scherer S., Potts M.: Novel water stress protein from a desiccation-tolerant cyanobacterium. J.Biol.Chem. 264, 12546–12553 (1989).

    PubMed  CAS  Google Scholar 

  • Sili C., Ena A., Materassi R., Vincenzini X.: Germination of desiccated aged akinetes of alkaliphilic cyanobacteria. Arch.Microbiol. 162, 20–25 (1994).

    Article  CAS  Google Scholar 

  • Sommer U.: Growth and survival strategies of planktonic diatoms, pp. 227–260 in Growth and Reproductive Strategies of Freshwater Phytoplankton (C.D. Sandgren, Ed.). Cambridge University Press, Cambridge (UK) 1988.

    Google Scholar 

  • Stanier R.Y., Kunisawa R., Mandel M., Cohen B.: Purification and properties of a unicellular blue-green alga (order Chroococcales). Bacteriol.Rev. 35, 171–205 (1971).

    PubMed  CAS  Google Scholar 

  • Venugopal V., Prasanna R., Sood A., Jaiswal P., Kaushik B.D.: Stimulation of pigment accumulation in Anabaena azollae strains: effect of light intensity and sugars. Folia Microbiol. 51, 56–134 (2006).

    Article  Google Scholar 

  • Volkmann M., Gorbushina A.A.: A broadly applicable method for extraction and characterization of mycosporines and mycosporine-like amino acids of terrestrial, marine and freshwater origin. FEMS Microbiol.Lett. 255, 286–295 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A.: Some devices for preserving blue-green algae in viable state. J.Gen.Appl.Microbiol. 5, 153–157 (1959).

    Article  CAS  Google Scholar 

  • Whitton B.A.: Effect of deep-freeze treatment on blue-green algal cultures. Brit.Phycol.Bull. 2, 177–178 (1962).

    Google Scholar 

  • Wieland A., Kuehl M.: Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity. FEMS Microbiol.Ecol. 55, 195–210 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y., Nakahara H.: The formation and degradation of cyanobacterium Aphanizomenon flos-aquae blooms: the importance of pH, water temperature, and day length. Limnology 6, 1–6 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Agrawal, S.C. Vegetative survival of some wall and soil blue-green algae under stress conditions. Folia Microbiol 53, 343–350 (2008). https://doi.org/10.1007/s12223-008-0053-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0053-7

Keywords

Navigation