Skip to main content
Log in

Regulation of phosphatidylglycerolphosphate synthase in aerobic yeast Kluyveromyces lactis

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The KlPGS1 gene encoding phosphatidylglycerolphosphate synthase (PGPS) is essential for the viability and multiplication of Kluyveromyces lactis. Regulation of PGPS expression by factors affecting mitochondrial development (C source, growth phase) and general phospholipid biosynthesis was followed. PGS1 mRNA levels were not altered as cells progressed from the exponential to the stationary phase of growth in glucose. PGS1 mRNA abundance was nearly identical in cells growing in a medium with glucose or glycerol as the sole C source during the different growth phases. Regulation of PGS1 expression by exogenous myo-inositol and choline was not mediated at the transcriptional level, the PGPS activity dropped to 70 % after myo-inositol addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CL:

cardiolipin

Ino:

myo-inositol

PGPase:

phosphatidylglycerolphosphatase

CLS:

cardiolipin synthase

PG:

phosphatidylglycerol

PGPS:

phosphatidylglycerolphosphate synthase

DAG:

1,2-di-O-acyl-sn-glycerol

PGP:

phosphatidylglycerolphosphate

UAS:

upstream activation sequence

KlPGS1 :

PGS1 gene from Kluyveromyces lactis

ScPGS1 :

PGS1 gene from Saccharomyces cerevisiae

Refferences

  • Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K.: Current Protocols in Molecular Biology. Wiley Interscience-John Wiley & Sons, New York 1994.

    Google Scholar 

  • Bachhawat N., Ouyang Q., Henry S.A.: Functional characterization of an inositol-sensitive upstream activation sequence in yeast. J.Biol.Chem.270, 25087–25095 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Breunig K.D., Bolotin-Fukuhara M., Bianchi M.M., Bourgarel D., Falcone C., Ferrero I., Frontali L., Goffrini P., Krijger J.J., Mazzoni C., Milkowski C., Steensma H.Y., Wèsolowski-Louvel M., Zeeman A.M.: Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzyme Microb.Technol.26, 771–780 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Carman G.M., Belunis C.J.: Phosphatidylglycerolphosphate synthase activity in Saccharomyces cerevisiae. Can.J.Microbiol.29, 1452–1457 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Carman G.M., Henry S.A.: Phospholipid biosynthesis in yeast. Ann.Rev.Biochem.58, 635–669 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Carman G.M., Zeimetz G.M.: Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. J.Biol.Chem.271, 13293–13296 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Chang S.C., Heacock P.N., Clancey C.J., Dowhan W.: The PEL1 gene (renamed PGS1) encodes the phosphatidylglycerolphosphate synthase of Saccharomyces cerevisiae. J.Biol.Chem.273, 9829–9836 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Eble K.S., Coleman W.B., Hantag R.R., Cunningham C.C.: Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J.Biol.Chem.265, 19434–19440 (1990).

    PubMed  CAS  Google Scholar 

  • Eilers M., Endo T., Schatz G.: Adriamycin, a drug interacting with acidic phospholipids, blocks import of precursor protein by isolated yeast mitochondria. J.Biol.Chem.264, 2945–2950 (1989).

    PubMed  CAS  Google Scholar 

  • Endo T., Eilers M., Schatz G.: Binding of a tightly folded artficial mitochondrial precursor protein to the mitochondrial outer membrane involves a lipid-mediated conformational change. J.Biol.Chem.264, 2951–2956 (1989).

    PubMed  CAS  Google Scholar 

  • Fry M., Green D.E.: Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J.Biol. Chem.256, 1874–1880 (1981).

    PubMed  CAS  Google Scholar 

  • Gallet P.F., Petit J.M., Maftah A., Zachowski A., Julien R.: Assymmetrical distribution of cardiolipin in yeast inner mitochondrial membrane triggered by carbon catabolite repression. Biochem.J.324, 627–634 (1997).

    PubMed  CAS  Google Scholar 

  • Gaynor P.M., Hubbell S., Schmidt A.J., Lina R.A., Minskoff S.A., Greenberg M.L.: Regulation of phosphatidylglycerolphosphate synthase in Saccharomyces cerevisiae by factors affecting mitochondrial development. J.Bacteriol.173, 6124–6131 (1991).

    PubMed  CAS  Google Scholar 

  • Gohil V.M., Hayes P., Matsuyama S., Schägger H., Schlame M., Greenberg M.L.: Cardiolipin biosynthesis and mitochondrial respiratory chain function are interdependent. J.Biol.Chem.279, 42612–42618 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Gomez B., Robinson N.C.: Phospholipase digestion of bound cardiolipin reversibly inactivates bovine cytochrome bc1. Biochemistry38, 9031–9038 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Gonzales Siso M.I., Freire-Picos M.A., Ramil E., Gonzales-Dominguez M., Rodriguez-Torres A.M., Cerdan M.E.: Respirofermentative metabolism in Kluyveromyces lactis: insights and perspectives. Enzyme Microb.Technol.26, 699–705 (2000).

    Article  Google Scholar 

  • Greenberg M.L., Lopes J.M.: Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol.Rev.60, 1–20 (1996).

    PubMed  CAS  Google Scholar 

  • Greenberg M.L., Hubbell S., Lam C.: Inositol regulates phosphatidylglycerolphosphate synthase expression in Saccharomyces cerevisiae. Mol.Cell Biol.8, 4773–4779 (1988).

    PubMed  CAS  Google Scholar 

  • Hardy S., El-Assaad W., Przybytkowski E., Joly E., Prentki M., Langelier Y.: Saturated fatty acid-induced apoptosis in MDAMB-231 breast cancer cells. A role for cardiolipin. J.Biol.Chem.278, 31861–31870 (2003).

    Article  PubMed  CAS  Google Scholar 

  • He Q., Greenberg M.L.: Post-translational regulation of phosphatidylglycerolphosphate synthase in response to inositol. Mol.Microbiol.53, 1243–1249 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann B., Stockl A., Schlame M., Beyer K., Klingenberg M.: The reconstituted ADP/ATP carrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants. J.Biol.Chem.269, 1940–1944 (1994).

    PubMed  CAS  Google Scholar 

  • Janitor M., Šubík J.: Molecular cloning of the PEL1 gene of Saccharomyces cerevisiae that is essential for the viability of petite mutants. Curr.Genet.24, 307–312 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Janitor M., Obernauerová M., Kohlwein S.D., Šubík J.: The pel1 mutant of Saccharomyces cerevisiae is deficient in cardiolipin and does not survive the disruption of the CHO1 gene encoding phosphatidylserine synthase. FEMS Microbiol.Lett.140, 43–47 (1996).

    PubMed  CAS  Google Scholar 

  • Koshkin V., Greenberg M.L.: Oxidative phosphorylation in cardiolipin-lacking yeast mitochondria. Biochem.J.347, 687–691 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Koshkin V., Greenberg M.L.: Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria. Biochem.J.364, 317–322 (2002).

    PubMed  CAS  Google Scholar 

  • Lange C., Nett J.H., Trumpower B.L., Hunte C.: Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J.20, 6591–6600 (2001).

    Article  PubMed  CAS  Google Scholar 

  • McGraw P., Henry S.A.: Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis. Genetics122, 317–330 (1989).

    PubMed  CAS  Google Scholar 

  • Mulder W., Scholten I.H.J.M., Grivell L.A.: Carbon catabolite regulation of transcription of nuclear genes coding mitochondrial proteins in the yeast Kluyveromyces lactis. Curr.Genet.28, 267–273 (1995a).

    Article  PubMed  CAS  Google Scholar 

  • Mulder W., Scholten I.H.J.M., Grivell L.A.: Distinct transcriptional regulation of a gene coding for a mitochondrial protein in the yeast Saccharomyces cerevisiae and Kluyveromyces lactis despite similar promoter structures. Mol.Microbiol.17, 813–824 (1995b).

    Article  PubMed  CAS  Google Scholar 

  • Ostrander D.B., Zhang M., Myleykovskaya E., Rho M., Dowhan W.: Lack of mitochondrial anionic phospholipid causes an inhibition of translation of protein components of the electron transport chain. J.Biol.Chem.276, 25262–25272 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Paradies G., Petrosillo G., Pistolese M., Di Venosa N., Serena D., Ruggiero F.M.: Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolate from rat heart subjected to ischemia and reperfusion. Free Radic.Biol.Med.27, 42–50 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer K., Gohil V., Stuart R.A., Hunte C., Brandt U., Greenberg M.L., Schagger H.: Cardiolipin stabilizes respiratory chain supercomplexes. J.Biol.Chem.278, 52873–52880 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Robinson N.C.: Functional binding of cardiolipin to cytochrome-c oxidase. J.Bioenerg.Biomembr.25, 156–163 (1993).

    Article  Google Scholar 

  • Schlame M., Rua D., Greenberg M.L.: The biosynthesis and functional role of cardiolipin. Prog.Lipid Res.39, 257–288 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Sedlak E., Robinson N.: Phospholipase A2 digestion of cardiolipin bound to bovine cytochrome-c oxidase alters both activity and quaternary structure. Biochemistry38, 14966–14972 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Stevens B.: Mitochondrial structure, pp. 471–504 in Molecular Biology of the Yeast Saccharomyces cerevisiae. Life Cycle and Inheritance (J.N. Strathern, E.W. Jones, J.R. Broach, Eds). Cold Spring Harbor Laboratory Press, New York 1981.

    Google Scholar 

  • Tyčiaková S., Obernauerová M., Dokusová L., Kooistra R.A., Steensma H.Y., Sulo P., Šubík J.: The KlPGS1 gene encoding phosphatidylglycerolphosphate synthase in Kluyveromyces lactis is essential and assigned to chromosome I. FEMS Yeast Res.5, 19–27 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Vreken P., Valianpour F., Nijtmants L.G., Grivell L.A., Plecko B., Wanders R.J.A., Barth P.G.: Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem.Biophys.Res.Commun.279, 378–382 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Zhang M., Mileykovskaya E., Dowhan W.: Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J.Biol.Chem.277, 43553–43566 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Zhong Q., Greenberg M.L.: Regulation of phosphatidylglycerolphosphate synthase by inositol in Saccharomyces cerevisiae is not at the level of PGS1 mRNA abundance. J.Biol.Chem.278, 33978–33984 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Zhong Q., Gvozdenovic-Jeremic J., Webster P., Zhou J., Greenberg M.L.: Loss of function of KRE5 suppresses temperature sensitivity of mutants lacking mitochondrial anionic lipids. Mol.Biol.Cell16, 665–675 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Obernauerová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tichá, E., Polakovičová, V. & Obernauerová, M. Regulation of phosphatidylglycerolphosphate synthase in aerobic yeast Kluyveromyces lactis . Folia Microbiol 53, 319–324 (2008). https://doi.org/10.1007/s12223-008-0050-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0050-x

Keywords

Navigation