Skip to main content
Log in

Development of membrane lipids in the surfactin producer Bacillus subtilis

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Processes occurring in the cytoplasmic membrane of the surfactin producer Bacillus subtilis were examined during a 3-d cultivation. The fatty acid composition was found to be almost stable within this interval, except for the early stationary phase when the nonbranched, mostly C16:0 and C18:0 (high melting fatty acids), prevailed transiently in the membrane. As for phospholipids, phosphatidylglycerol and phosphatidylethanolamine, representing 73 % of the total in the membranes of exponential cells were partly replaced by cardiolipin, which gradually rose from 5 to 28 % at the end of cultivation. In parallel, steady-state fluorescence anisotropy (r s) measurements with 1,6-diphenyl-1,3,5-hexatriene (DPH) indicated a remarkable increase of r s DPH during the long-term cultivation and implied a continuous rigidization of the membrane interior. By contrast, the almost constant values of r s 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene 4-toluenesulfonate (TMA-DPH) reflected stable microviscosity of the membrane surface region. Thus, the significant increase of high melting fatty acids and cardiolipin in the cytoplasmic membrane together with the progressive rigidization of the membrane interior reflected the cell adaptation to adverse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CL:

cardiolipin

PG:

phosphatidylglycerol

DPH:

1,6-diphenyl-1,3,5-hexatriene (all trans)

PMSF:

phenylmethanesulfonyl fluoride

FA(s):

fatty acid(s)

PS:

phosphatidylserine

GC-MS:

gas chromatography-mass spectrometry

PXNH2 :

lysylphosphatidylglycerol (see footnote d to Table II)

HPLC:

high performance liquid chromatography

r s :

steady-state fluorescence anisotropy

PA:

phosphatidic acid

TMA-DPH:

1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene 4-toluenesulfonate

PE:

phosphatidylethanolamine

References

  • Bisschop A., Konings W.N.: Reconstitution of reduced nicotinamide adenine dinucleotide oxidase activity with menadione in membrane vesicles from the menaquinone-deficient Bacillus subtilis AroD. Relation between electron transfer and active transport. Eur.J.Biochem. 67, 357–365 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Cameotra S.S, Makkar R.S.: Recent applications of biosurfactants as biological and immunological molecules. Curr.Opin.Microbiol. 7, 262–266 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Card G.L., Georgi C.E., Militzer W.E.: Phospholipids from Bacillus stearothermophilus. J.Bacteriol. 97, 186–192 (1969).

    PubMed  CAS  Google Scholar 

  • Glass R.L.: Alcoholysis, saponification and the preparation of fatty acid methyl esters. Lipids 6, 919–926 (1971).

    Article  CAS  Google Scholar 

  • Guerzoni M.E., Lanciotti R., Cocconcelli P.S.: Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147, 2255–2264 (2001).

    PubMed  CAS  Google Scholar 

  • Heerklotz H., Seelig J.: Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur.Biophys.J. 36, 305–314 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Hoch F.L.: Cardiolipins and biomembrane function. Biochim.Biophys.Acta 1113, 71–133 (1992).

    PubMed  CAS  Google Scholar 

  • Kakinuma A., Hori M., Isono M., Tamura G., Arima K.: Determination of amino acid sequence in surfactin, a crystalline peptidolipid surfactant produced by Bacillus subtilis. Agric.Biol.Chem. 33, 971–997 (1969).

    CAS  Google Scholar 

  • Lakowicz J.R.: Principles of Fluorescence Spectroscopy, Plenum Press, New York 1983.

    Google Scholar 

  • Lang D.R., Lundgren D.G.: Lipid composition of Bacillus cereus during growth and sporulation. J.Bacteriol. 101, 483–489 (1970).

    PubMed  CAS  Google Scholar 

  • Lewis R.N., Mcelhaney R.N.: Surface charge markedly attenuates the nonlamellar phase-forming propensities of lipid bilayer membranes: calorimetric and 31P-nuclear magnetic resonance studies of mixtures of cationic, anionic, and zwitterionic lipids. Biophys.J. 79, 1455–1464 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lindgren V.: A cardiolipin-defficient mutant of Bacillus subtilis. FEMS Microbiol.Lett. 10, 123–126 (1981).

    Article  CAS  Google Scholar 

  • López C.S., Heras H., Garda H., Ruzal S., Sánchez-Rivas C., Rivas E.: Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Internat.J.Food Microbiol. 55, 137–142 (2000).

    Article  Google Scholar 

  • López C.S., Alice A.F., Heras H., Rivas E.A., Sánchez-Rivas C.: Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. Microbiology 152, 605–616 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Maget-Dana R., Ptak M.: Interactions of surfactin with membrane models. Biophys.J. 68, 1937–1943 (1995).

    PubMed  CAS  Google Scholar 

  • Mansilla M.C., de Mendoza D.: The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch.Microbiol. 183, 229–235 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Mukamolova G.V., Yanopolskaya N.D., Votyakova T.V., Popov V.I., Kaprelyants A.S., Kell D.B.: Biochemical changes accompanying the long-term starvation of Micrococcus luteus cells in spent growth medium. Arch.Microbiol. 163, 373–379 (1995).

    Article  CAS  Google Scholar 

  • Mulligan C.N.: Environmental applications for biosurfactants. Environ.Pollut. 133, 183–198 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Petersohn A., Brigulla M., Haas S., Hoheisel J.D., Völker U., Hecker M.: Global analysis of the general stress response of Bacillus subtilis. J.Bacteriol. 183, 5617–5631 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Radin N.S.: Extraction of tissue with a solvent of low toxicity. Methods Enzymol. 72, 5–7 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Ramos J.L., Duque E., Rodríguez-Hervas J.J., Godoy P., Haïdour A., Reyes F., Fernandéz-Barrero A.: Mechanisms for solvent tolerance in bacteria. J.Biol.Chem. 272, 3887–3890 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Rigomier D., Lacombe C., Lubochinsky B.: Cardiolipin metabolism in growing and sporulating Bacillus subtilis. FEBS Lett. 89, 131–135 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues L., Banat I.M., Teixeira J., Oliveira R.: Biosurfactants: potential applications in medicine. J.Antimicrob.Chemother. 57, 609–618 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Rouser G., Yamamoto A.: Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5, 495–496 (1970).

    Article  Google Scholar 

  • Seydlová G., Svobodová J.: Review of surfactin chemical properties and the potential biomedical applications. Centr.Eur.J.Med. 3, 123–133 (2008).

    Article  CAS  Google Scholar 

  • Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C.: Measurement using bicinchoninic acid; elimination of interfering substances. Analyt.Biochem. 180, 136–139 (1985).

    Google Scholar 

  • Strauch M.A.: Regulation of Bacillus subtilis gene expression during the transition from exponential to stationary phase. Progr.Nucl. Acids Res.Mol.Biol. 46, 121–153 (1993).

    Article  CAS  Google Scholar 

  • Toman O., Le Hégarat F., Svobodová J.: Detection of lateral heterogeneity in the cytoplasmic membrane of Bacillus subtilis. Folia Microbiol. 52, 339–345 (2007).

    Article  CAS  Google Scholar 

  • Wanner U., Egli T.: Dynamics of microbial growth and cell composition in batch culture. FEMS Microbiol.Rev. 6, 19–43 (1990).

    PubMed  CAS  Google Scholar 

  • Wei Y.H., Chu I.M.: Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme Microb. Technol. 22, 724–728 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Svobodová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seydlová, G., Svobodová, J. Development of membrane lipids in the surfactin producer Bacillus subtilis . Folia Microbiol 53, 303–307 (2008). https://doi.org/10.1007/s12223-008-0047-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0047-5

Keywords

Navigation