Skip to main content
Log in

Changes in Galleria mellonella lysozyme level and activity during Pseudomonas aeruginosa infection

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The level of lysozyme in fat body, hemocytes and cell-free hemolymph from Galleria mellonella larvae infected with Pseudomonas aeruginosa was determined and evaluated. In the samples of fat body and hemocytes, an increase in lysozyme content was detected 1 d after infection and then a significant decrease was observed after a prolonged infection time. In the case of cell-free hemolymph, an increase in the lysozyme level was noticeable during the first 30 h post injection and stayed at a similar level for 42 h. The smaller decrease of the lysozyme level after 42 h might be associated with the development of bacteremia of P. aeruginosa in insects. In addition, the gradual increase in the content of lysozyme correlated with the increase of its activity in the hemolymph of the infected larvae as a response to injection with P. aeruginosa. The G. mellonella lysozyme appeared to be insensitive to extracellular proteinases produced in vivo by P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CFH:

cell-free hemolymph

CHAPS:

3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

DTT:

1,4-dithiothreitol

EDTA:

ethylenediamine-N,N,N′,N′-tetraacetic acid

EWL:

egg-white lysozyme

IEF:

isoelectric focusing

IPG:

immobilized pH gradient

IPS:

insect physiological saline

LPS:

lipopolysaccharide

PMSF:

phenylmethanesulfonyl fluoride

PTU:

N-phenylthiourea

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  • Andrejko M., Cytrynska M., Jakubowicz T.: Apolipophorin III is a substrate for protease IV from Pseudomonas aeruginosa. FEMS Microbiol.Lett. 243, 331–337 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Andrejko M., Mizerska-Dudka M., Jakubowicz T.: Changes in Galeria mellonella apolipophorin III level during Pseudomonas aeruginosa infection. J.Invertebr.Pathol. 97, 14–19 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Araújo C.A.C., Waniek P.J., Stock P., Mayer C., Jansen A.M., Schaub G.A.: Sequence characterization and expression patterns of defensin and lysozyme encoding genes from the gut of the reduviid bug Triatoma brasiliensis. Insect Biochem.Mol.Biol. 36, 547–560 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Boman H.G., Nilsson-Faye I., Paul K., Rasmuson T. Jr.: Insect immunity. I. Characteristic of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect.Immun. 10, 136–145 (1974).

    PubMed  CAS  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein—dye binding. Anal.Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Bulet P., Hetru C., Dimarcq J.-L., Hoffmann D.: Antimicrobial peptides in insect; structure and function. Develop.Comp.Immunol. 23, 329–344 (1999).

    Article  CAS  Google Scholar 

  • Caballero A.R., Moreau J.M., Engel L.S., Marquart M.E., Hill J.M., O’Callaghan R.J.: Pseudomonas aeruginosa protease IV enzyme assays and comparison to other Pseudomonas proteases. Anal.Biochem. 290, 330–337 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Chadwick J.S.: Relation of lysozyme concentration to acquired immunity against Pseudomonas aeruginosa in Galleria mellonella. J.Invertebr.Pathol. 15, 455–456 (1970).

    Article  Google Scholar 

  • Dunn P.E., Dai W., Kanost M.R., Geng C.: Soluble peptidoglycan fragments stimulate antibacterial protein synthesis by fat body from larvae of Manduca sexta. Develop.Comp.Immunol. 9, 559–568 (1985).

    Article  CAS  Google Scholar 

  • Dunphy G., Morton D., Kropinski A., Chadwick J.: Pathogenicity of lipopolysaccharide mutants of Pseudomonas aeruginosa for larvae of Galeria mellonella: bacterial properties associated with virulence. J.Invert.Pathol. 47, 48–55 (1986).

    Article  CAS  Google Scholar 

  • Engel L.S., Hill J.M., Caballero A.R., Green L.C., O’Callaghan R.J.: Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J.Biol.Chem. 273, 16792–16797 (1998a).

    Article  PubMed  CAS  Google Scholar 

  • Engel L.S., Hill J.M., Moreau J.M., Green L.C., Hobden J.A., O’Callaghan R.J.: Pseudomonas aeruginosa protease IV produces corneal damage and contributes to bacterial virulence. Invest.Ophthalmol.Vis.Sci. 39, 662–665 (1998b).

    PubMed  CAS  Google Scholar 

  • Hendrickson E.L., Plotnikova J., Mahajan-Miklos S., Rahme L.G., Ausubel F.M.: Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects and mice. J.Bacteriol. 183, 7126–7134 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Hoffman J.A., Reichert J.M., Hetru C.: Innate immunity in higher insects. Curr.Opin.Immunol. 8, 8–13 (1996).

    Article  Google Scholar 

  • Hoštacká A., Čižnár I., Slobodníková L., Kotulová D.: Clinical Pseudomonas aeruginosa: potential factors of pathogenicity and resistance to antimicrobials. Folia Microbiol. 51, 633–638 (2006).

    Article  Google Scholar 

  • Hultmark D.: Insect lysozymes. Experientia Suppl. 75, 87–102 (1996).

    CAS  Google Scholar 

  • Jander G., Rahme L.G., Ausubel F.M.: Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J.Bacteriol. 182, 3843–3845 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Jarosz J.: Hemolymph immune proteins protect the insect body cavity from invading bacteria. Comp.Biochem.Physiol. 111, 213–220 (1995).

    Google Scholar 

  • Jiravanichpaisal P., Lee B.L., Soderhall K.: Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211, 213–236 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Jolles P., Jolles J.: What’s new in lysozyme research? Always a model system, today as yesterday. Mol.Cell.Biochem. 63, 165–189 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Kanost M.R., Dai W., Dunn P.E.: Peptidoglycan fragments elicit antibacterial protein synthesis in larvae of Manduca sexta. Arch. Insect Biochem.Physiol. 8, 147–164 (1988).

    Article  CAS  Google Scholar 

  • Kanost M.R., Kawoya J.K., Law J.H., Ryan R.O., Van Heusden M.C., Ziegler R.: Insect hemolymph proteins. Adv.Insect Physiol. 22, 299–396 (1990).

    Article  Google Scholar 

  • Kavanagh K., Reeves E.P.: Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol.Rev. 28, 101–112 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kipnis E., Sawa T., Wiener-Kronish J.: Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med.Maladies Infect. 36, 78–91 (2006).

    Article  CAS  Google Scholar 

  • Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Lavine M.D., Strand M.R.: Insect hemocytes and their role in immunity. Insect.Biochem.Mol.Biol. 32, 1295–1309 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Lazdunski A., Guzzo J., Filloux A., Bally M., Murgier M.: Secretion of extracellular proteins by Pseudomonas aeruginosa. Biochimie 72, 147–156 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Lockey T.D., Ourth D.D.: Purification and characterization of lysozyme from hemolymph of Heliothis virescens larvae. Biochem. Biophys.Res.Commun. 220, 502–508 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Lyczak J.B., Cannon C.L., Pier G.B.: Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2, 1051–1060 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Malloy J.L., Veldhuizen R.A.W., Thibodeaux B.A., O’Callaghan R.J., Wright J.R.: Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. Am.J.Physiol.Lung Cell Mol.Physiol. 288, 409–418 (2005).

    Article  CAS  Google Scholar 

  • Miyata S., Casey M., Frank D.W., Ausubel F.M., Drenkard E.: Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect.Immun. 71, 2404–2413 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Mohrig W., Messner B.: Lysozyme as antibacterial agent in honey and bees venom. Acta Biol.Med.Ger. 21, 85–95 (1968).

    PubMed  CAS  Google Scholar 

  • Morishima I., Yamada K., Ueno T.: Bacterial peptidoglycan as elicitor of antibacterial protein synthesis in larvae of silkworm, Bombyx mori. Insect Biochem.Mol.Biol. 22, 363–367 (1992).

    Article  CAS  Google Scholar 

  • Morishima I., Horiba T., Iketani M., Nishioka E., Yamano Y.: Parallel induction of cecropin and lysozyme in larvae of the silkworm, Bombyx mori. Develop.Comp.Immunol. 19, 357–363 (1995).

    Article  CAS  Google Scholar 

  • Powning R.F., Davidson W.J.: Studies on insect bacteriolytic enzymes — I. Lysozyme in hemolymph of Galleria mellonella and Bombyx mori. Comp.Biochem.Physiol. 45, 669–681 (1973).

    Article  CAS  Google Scholar 

  • Salzet M.: Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol. 22, 285–288 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Scully L.R., Bidochka M.J.: Developing insect models for the study of current and emerging human pathogens. FEMS Microbiol. Lett. 263, 1–9 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Traidej M., Marquart M.E., Caballero A.R., Thibodeaux B.A., O’Callaghan R.J.: Identification of the active site residues of Pseudomonas aeruginosa protease IV. J.Biol.Chem. 278, 2549–2553 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Vilcinskas A., Matha V.: Antimycotic activity of lysozyme and its contribution to antifungal humoral defense reactions in Galleria mellonella. Anim.Biol. 6, 19–29 (1997).

    Google Scholar 

  • Wang S., Ng T.B., Chen T., Lin D., Wu J., Rao P., Ye X.: First report of a novel plant lysozyme with both antifungal and antibacterial activities. Biochem.Biophys.Res.Commun. 37, 820–827 (2005).

    Article  CAS  Google Scholar 

  • Weise C.: UniProtKB/Swiss-Prot entry, LYS_GALME, accession no. P82174 — Lysozyme (EC 3.2.1.17, 1,4-β-N-acetylmuramidase) (2001); http://expasy.org/uniprot/P82174.

  • Yu K.H., Kim K.N., Lee J.H., Lee H.S., Kim S.H., Cho K.Y., Nam M.H., Lee I.H.: Comparative study on characteristics of lysozymes from the hemolymph of three lepidopteran larvae, Galeria mellonella, Bombyx mori, Agrius convolvuli. Develop.Comp. Immunol. 26, 707–713 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Andrejko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrejko, M., Mizerska-Dudka, M. & Jakubowicz, T. Changes in Galleria mellonella lysozyme level and activity during Pseudomonas aeruginosa infection. Folia Microbiol 53, 147–151 (2008). https://doi.org/10.1007/s12223-008-0021-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0021-2

Keywords

Navigation