Skip to main content
Log in

Preparation of the Composite Yarn PEDOT:PSS/rGO/PAN/DL and Its Application in Sodium-Ion Detection

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Effective farmland management requires real-time monitoring of plant growth status and timely response to stressors. To achieve this goal, we utilized wire organic electrochemical transistors (WECTs) to convert ion signals in plant vasculature into electrical signals in circuits, enabling the detection of ion concentrations. In our study, we employed a flexible substrate composed of a core-sheath structure nanofiber yarn impregnated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as a semiconductor channel. The gate was made of silver wire, while silver paste was sprayed at both ends of the core-sheath yarn to serve as a source and drain. This configuration allowed us to construct a wire organic electrochemical transistor that exhibited modulation performance and sensitivity at low voltages, with a transconductance of 1.07 × 10–4 S. We conducted sodium ion concentration testing and successfully achieved the sensing of sodium ions at concentrations ranging from 10–4 to 10–1 M. This study lays the groundwork for the future development of organic electrochemical transistors in plants, enabling in situ detection of sodium ion concentrations under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Sneha, N.A. Ravindranath, N. Murugesan, V. Jayaraman, A biosensor for monitoring of salt stress in plants. Org. Electron. 113, 106698 (2023)

    Article  CAS  Google Scholar 

  2. A. Armada-Moreira, C. Diacci, A.M. Dar, M. Berggren, D.T. Simon, E. Stavrinidou, Benchmarking organic electrochemical transistors for plant electrophysiology. Front. Plant Sci. 13, 1–11 (2022)

    Article  Google Scholar 

  3. F. Gentile, F. Vurro, M. Janni, R. Manfredi, F. Cellini, A. Petrozza, A. Zappettini, N. Coppedè, A. Biomimetic, Biocompatible OECT sensor for the real-time measurement of concentration and saturation of ions in plant sap. Adv. Electron. Mater. (2022). https://doi.org/10.1002/aelm.202200092

    Article  Google Scholar 

  4. F. Vurro, E. Marchetti, M. Bettelli, L. Manfrini, A. Finco, C. Sportolaro, N. Coppedè, N. Palermo, M.G. Tommasini, A. Zappettini, M. Janni, Application of the OECT-based in vivo biosensor bioristor in fruit tree monitoring to improve agricultural sustainability. Chemosensors. 11(7), 374 (2023)

    Article  CAS  Google Scholar 

  5. F. Vurro, R. Manfredi, M. Bettelli, G. Bocci, A.L. Cologni, S. Cornali, R. Reggiani, E. Marchetti, N. Coppedè, S. Caselli, A. Zappettini, M. Janni, In vivo sensing to monitor tomato plants in field conditions and optimize crop water management. Precis. Agric. 24(6), 2479–2499 (2023)

    Article  Google Scholar 

  6. J. Yu, S. Qin, H. Zhang, Y. Wei, X. Zhu, Y. Yang, Q. Sun, Fiber-shaped triboiontronic electrochemical transistor. Research (2021). https://doi.org/10.34133/2021/9840918

    Article  PubMed  PubMed Central  Google Scholar 

  7. N. Coppedè, M. Janni, M. Bettelli, C.L. Maida, F. Gentile, M. Villani, R. Ruotolo, S. Iannotta, N. Marmiroli, M. Marmiroli, A. Zappettini, An in vivo biosensing, biomimetic electrochemical transistor with applications in plant science and precision farming. Sci. Rep. 7, 1–9 (2017)

    Article  Google Scholar 

  8. F. Vurro, M. Janni, N. Coppedè, F. Gentile, R. Manfredi, M. Bettelli, A. Zappettini, Development of an in vivo sensor to monitor the effects of vapor pressure deficit (VPD) changes to improve water productivity in agriculture. Sensors (Switzerland) 19(21), 4667 (2019)

    Article  CAS  Google Scholar 

  9. Y. Wang, Y. Wang, R. Zhu, Y. Tao, Y. Chen, Q. Liu, X. Liu, D. Wang, Woven fiber organic electrochemical transistors based on multiwalled carbon nanotube functionalized PEDOT nanowires for nondestructive detection of potassium ions. Mater. Sci. Eng. B 278, 115657 (2022)

    Article  CAS  Google Scholar 

  10. N. Coppedè, M. Giannetto, M. Villani, V. Lucchini, E. Battista, M. Careri, A. Zappettini, Ion selective textile organic electrochemical transistor for wearable sweat monitoring. Org. Electron. 78, 105579 (2020)

    Article  Google Scholar 

  11. R.R. Nair, Organic electrochemical transistor on paper for the detection of halide anions in biological analytes. Flex. Print. Electron. 5, 045004 (2020)

    Article  CAS  Google Scholar 

  12. C. Liao, M. Zhang, L. Niu, Z. Zheng, F. Yan, Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. J. Mater. Chem. B. 1, 3820–3829 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. S.K. Kanakamedala, H.T. Alshakhouri, M. Agarwal, M.A. Decoster, A simple polymer based electrochemical transistor for micromolar glucose sensing. Sens. Actuators, B Chem. 157, 92–97 (2011)

    Article  CAS  Google Scholar 

  14. R.X. He, M. Zhang, F. Tan, P.H.M. Leung, X.Z. Zhao, H.L.W. Chan, M. Yang, F. Yan, Detection of bacteria with organic electrochemical transistors. J. Mater. Chem. 22, 22072–22076 (2012)

    Article  CAS  Google Scholar 

  15. H. Tang, P. Lin, H.L.W. Chan, F. Yan, Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens. Bioelectron.. Bioelectron. 26, 4559–4563 (2011)

    Article  CAS  Google Scholar 

  16. C. Xiong, H. Qu, W. Chen, L. Zhang, L. Qiu, L. Zheng, F. Xia, Real-time detection of Cu(II) with PEDOT: PSS based organic electrochemical transistors. Sci. China Chem. 60, 1205–1211 (2017)

    Article  CAS  Google Scholar 

  17. Y. Wang, Z. Zhou, X. Qing, W. Zhong, Q. Liu, W. Wang, M. Li, K. Liu, D. Wang, Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection. Anal. Bioanal. Chem.Bioanal. Chem. 408, 5779–5787 (2016)

    Article  CAS  Google Scholar 

  18. C. Diacci, T. Abedi, J.W. Lee, E.O. Gabrielsson, M. Berggren, D.T. Simon, T. Niittylä, E. Stavrinidou, Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. iScience. 24(1), 101966 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. G. Tarabella, M. Villani, D. Calestani, R. Mosca, S. Iannotta, A. Zappettini, N. Coppedè, A single cotton fiber organic electrochemical transistor for liquid electrolyte saline sensing. J. Mater. Chem. 22, 23830–23834 (2012)

    Article  CAS  Google Scholar 

  20. A. Yang, Y. Li, C. Yang, Y. Fu, N. Wang, L. Li, F. Yan, Fabric organic electrochemical transistors for biosensors. Adv. Mater. 30, 1–8 (2018)

    Google Scholar 

  21. X. Qing, Y. Wang, Y. Zhang, X. Ding, W. Zhong, D. Wang, W. Wang, Q. Liu, K. Liu, M. Li, Z. Lu, Wearable fiber-based organic electrochemical transistors as a platform for highly sensitive dopamine monitoring. ACS Appl. Mater. Interfaces 11, 13105–13113 (2019)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Liu, X. Li, J.C. Lü, Electrically conductive poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid/polyacrylonitrile composite fibers prepared by wet spinning. J. Appl. Polym. Sci.Polym. Sci. 130, 370–374 (2013)

    Article  CAS  Google Scholar 

  23. V.C. Tran, G.G. Mastantuoni, M. Zabihipour, L. Li, L. Berglund, M. Berggren, Q. Zhou, I. Engquista, Electrical current modulation in wood electrochemical transistor. PNAS 120, 1–7 (2023)

    Article  Google Scholar 

  24. X. Qi, Spectroscopic Methods in the Study of Polymer Structure (Higher Education Press, Beijing, 2004), p.42

    Google Scholar 

  25. D. Zhang, A.B. Karki, D. Rutman, D.P. Young, A. Wang, D. Cocke, T.H. Ho, Z. Guo, Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: fabrication and property analysis. Polymer (Guildf) 50, 4189–4198 (2009)

    Article  CAS  Google Scholar 

  26. Y. Cai, X. Xu, Q. Wei, X. Yao, H. Qiao, L. Song, Y. Hu, F. Huang, W. Gao, Structure and morphological evolvement of electrospun polyacrylonitrile/organic-modified Fe-montmorillonite composite carbon nanofibers. Int. J. Polym. Anal. Charact.Polym. Anal. Charact. 16, 24–35 (2011)

    Article  CAS  Google Scholar 

  27. J. Jian, X. Guo, L. Lin, Q. Cai, J. Cheng, J. Li, Gas-sensing characteristics of dielectrophoretically assembled composite film of oxygen plasma-treated SWCNTs and PEDOT/PSS polymer. Sens. Actuators, B Chem. 178, 279–288 (2013)

    Article  CAS  Google Scholar 

  28. R. Mangu, S. Rajaputra, V.P. Singh, MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors. Nanotechnology 22(21), 215502 (2011)

    Article  PubMed  Google Scholar 

  29. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Article  CAS  Google Scholar 

  30. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)

    Article  CAS  Google Scholar 

  31. D.A. Bernards, G.G. Malliaras, Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater.Funct. Mater. 17, 3538–3544 (2007)

    Article  CAS  Google Scholar 

  32. P. Lin, F. Yan, H.L.W. Chan, Ion-sensitive properties of organic electrochemical transistors. ACS Appl. Mater. Interfaces 2, 1637–1641 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. Y. Fang, J. Feng, X. Shi, Y. Yang, J. Wang, X. Sun, W. Li, X. Sun, H. Peng, Coaxial fiber organic electrochemical transistor with high transconductance. NANO Res 16, 11885–11892 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was mainly supported by the Xinjiang Uygur Autonomous Region Tianshan Yingcai-Science and Technology Innovation Leading Talent Project, Grant number 2022TSYCLJ0044. Tianshan Innovation Team of Xinjiang Uygur Autonomous Region: Robot and Intelligent Equipment Technology Innovation Team, Grant number: 2022D14002.

Funding

Xinjiang Uygur Autonomous Region Tianshan Yingcai-Science and Technology Innovation Leading Talent Project,2022TSYCLJ0044., Jianping Zhou, Tianshan Innovation Team of Xinjiang Uygur Autonomous Region: Robot and Intelligent Equipment Technology Innovation Team, 2022D14002, Jianping Zhou.

Author information

Authors and Affiliations

Authors

Contributions

Zhilei Li: writing—original draft, writing—review and editing, Investigation. Jianping Zhou: conceptualization, methodology, writing —review and editing, supervision, project administration, funding acquisition. Yan Xu: conceptualization, methodology, supervision. Yuikui Shang: investigation. Changhua Chen: investigation. Tongtong Ran: investigation.

Corresponding author

Correspondence to Jianping Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 136 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhou, J., Xu, Y. et al. Preparation of the Composite Yarn PEDOT:PSS/rGO/PAN/DL and Its Application in Sodium-Ion Detection. Fibers Polym 25, 1291–1299 (2024). https://doi.org/10.1007/s12221-024-00524-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00524-5

Keywords

Navigation