Skip to main content
Log in

All-solid-state potentiometric salicylic acid sensor for in-situ measurement of plant

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Using PEDOT as the conductive polymer, an innovative small-scale sensor for directly measuring salicylate ions in plants was developed, which avoided the complicated sample pretreatment of traditional analytical methods and realized the rapid detection of salicylic acid. The results demonstrate that this all-solid-state potentiometric salicylic acid sensor is easy to miniaturize, has a longer lifetime (≥1 month), is more robust, and can be directly used for the detection of salicylate ions in real samples without any additional pretreatment. The developed sensor has a good Nernst slope (63.6 ± 0.7 mV/decade), the linear range is 10−2 ~ 10−6 M, and the detection limit can reach (2.8 × 10−7 M). The selectivity, reproducibility, and stability of the sensor were evaluated. The sensor can perform stable, sensitive, and accurate in situ measurement of salicylic acid in plants, and it is an excellent tool for determining salicylic acid ions in plants in vivo.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ding P, Ding Y. Stories of salicylic acid: a plant defense hormone. Trends Plant Sci. 2020;25(6):549–65. https://doi.org/10.1016/j.tplants.2020.01.004.

    Article  CAS  PubMed  Google Scholar 

  2. Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot. 2013;64(8):2255–68. https://doi.org/10.1093/jxb/ert085.

  3. Klessig DF, Tian M, Choi HW. Multiple targets of salicylic acid and its derivatives in plants and animals. Front Immunol. 2016;7:206. https://doi.org/10.3389/fimmu.2016.00206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kawano T, Bouteau F. Crosstalk between intracellular and extracellular salicylic acid signaling events leading to long-distance spread of signals. Plant Cell Rep. 2013;32(7):1125–38. https://doi.org/10.1007/s00299-013-1451-0.

    Article  CAS  PubMed  Google Scholar 

  5. Kawano T, Furuichi T, Muto S. Controlled salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnology. 2004;21(5):319–35. https://doi.org/10.5511/plantbiotechnology.21.319.

    Article  CAS  Google Scholar 

  6. Sun L, Liu X, Gao L, Lu Y, Li Y, Pan Z, et al. Simultaneous electrochemical determination of indole-3-acetic acid and salicylic acid in pea roots using a multiwalled carbon nanotube modified electrode. Anal Lett. 2015;48(10):1578–92. https://doi.org/10.1007/s00706-019-2375-3.

    Article  CAS  Google Scholar 

  7. Rawlinson S, McLister A, Kanyong P, Davis J. Rapid determination of salicylic acid at screen printed electrodes. Microchem J. 2018;137:71–7. https://doi.org/10.1016/j.microc.2017.09.019.

    Article  CAS  Google Scholar 

  8. Wang H-R, Bi X-M, Fang Z-J, Yang H, Gu H-Y, Sun L-J, et al. Real time sensing of salicylic acid in infected tomato leaves using carbon tape electrodes modified with handed pencil trace. Sens Actuators B Chem. 2019;286:104–10. https://doi.org/10.1016/j.snb.2019.01.119.

    Article  CAS  Google Scholar 

  9. Hu Y, Wang X, Wang C, Hou P, Dong H, Luo B, et al. A multifunctional ratiometric electrochemical sensor for combined determination of indole-3-acetic acid and salicylic acid. RSC Adv. 2020;10(6):3115–21. https://doi.org/10.1039/C9RA09951D.

  10. Ammann D. Ion-selective microelectrodes: principles, design and application: Springer Science & Business Media; 2013. https://doi.org/10.1007/978-3-642-52507-0.

  11. Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, et al. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron. 2021;184:113252. https://doi.org/10.1016/j.bios.2021.113252.

  12. Mazloum-Ardakani M, Pourhakkak P, Salavati-Niasari M, Karimi M, Mashhadizadeh M. Highly selective and sensitive membrane salicylate electrode based on complex of (1, 8-diamino-3, 6-dioxaoctane) nickel (II). J Braz Chem Soc. 2011;22(1):30–7. https://doi.org/10.1590/S0103-50532011000100004.

    Article  CAS  Google Scholar 

  13. Nur Ayanoğlu M, Kormalı Ertürün HE, Demirel Özel A, Şahin Ö, Yılmaz M, Kılıç E. Salicylate ion-selective electrode based on a calix [4] arene as ionophore. Electroanalysis. 2015;27(7):1676–84. https://doi.org/10.1002/elan.201400737.

    Article  CAS  Google Scholar 

  14. Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev. 2020;49(13):4405–65. https://doi.org/10.1039/C9CS00587K.

  15. Shokrollahi A, Abbaspour A, Ghaedi M, Haghighi AN, Kianfar A, Ranjbar M. Construction of a new Cu2+ coated wire ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylidene amino) phenyl) disufanyl) phenylimino) methyl)-4-methoxyphenol Schiff base. Talanta. 2011;84(1):34–41. https://doi.org/10.1016/j.talanta.2010.12.002.

  16. Firooz A, Mazloum M, Safari J, Amini M. Coated-wire copper(II)-selective electrode based on phenylglyoxal-α-monoxime ionophore. Anal Bioanal Chem. 2002;372(5):718–22. https://doi.org/10.1007/s00216-001-1205-7.

    Article  CAS  PubMed  Google Scholar 

  17. Hu J, Stein A, Bühlmann P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal Chem. 2016;76:102–14. https://doi.org/10.1016/j.trac.2015.11.004.

    Article  CAS  Google Scholar 

  18. Bahro C, Goswami S, Gernhart S, Koley D. Calibration-free solid-state ion-selective electrode based on a polarized PEDOT/PEDOT-S-doped copolymer as back contact. Anal Chem. 2022. https://doi.org/10.1021/acs.analchem.2c00748.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gao N, Yu J, Tian Q, Shi J, Zhang M, Chen S, et al. Application of PEDOT: PSS and its composites in electrochemical and electronic chemosensors. Chemosensors. 2021;9(4):79. https://doi.org/10.3390/chemosensors9040079.

    Article  CAS  Google Scholar 

  20. Huang M-R, Li X-G, Li F-R. Highly sensing and transducing materials for potentiometric ion sensors with versatile applicability. Prog Mater Sci. 2021:100885. https://doi.org/10.1016/j.pmatsci.2021.100885.

  21. Huang S-F, Shih W-L, Chen Y-Y, Wu Y-M, Chen L-C. Ion composition profiling and pattern recognition of vegetable sap using a solid-contact ion-selective electrode array. Biosens Bioelectron: X. 2021;9:100088. https://doi.org/10.1016/j.biosx.2021.100088.

  22. Casado N, Mecerreyes D. Introduction to redox polymers: classification, characterization methods and main applications. 2020. https://doi.org/10.1039/9781788019743-00001.

  23. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. A practical beginner’s guide to cyclic voltammetry. J Chem Educ. 2018;95(2):197–206. https://doi.org/10.1021/acs.jchemed.7b00361.

    Article  CAS  Google Scholar 

  24. Benoudjit A, Bader MM, Salim WWAW. Study of electropolymerized PEDOT: PSS transducers for application as electrochemical sensors in aqueous media. Sens Bio-Sens Res. 2018;17:18–24. https://doi.org/10.1016/j.sbsr.2018.01.001.

    Article  Google Scholar 

  25. Zhou C, Liu Z, Du X, Ringer SP. Electrodeposited PEDOT films on ITO with a flower-like hierarchical structure. Synth Met. 2010;160(15–16):1636–41. https://doi.org/10.1016/j.synthmet.2010.05.033.

    Article  CAS  Google Scholar 

  26. Zhao G, Liang R, Wang F, Ding J, Qin W. An all-solid-state potentiometric microelectrode for detection of copper in coastal sediment pore water. Sens Actuators B Chem. 2019;279:369–73. https://doi.org/10.1016/j.snb.2018.09.125.

    Article  CAS  Google Scholar 

  27. Volkov AV, Wijeratne K, Mitraka E, Ail U, Zhao D, Tybrandt K, et al. Understanding the capacitance of PEDOT: PSS. Adv Func Mater. 2017;27(28):1700329. https://doi.org/10.1002/adfm.201700329.

    Article  CAS  Google Scholar 

  28. Johnson RD, Bachas LG. Ionophore-based ion-selective potentiometric and optical sensors. Anal Bioanal Chem. 2003;376(3):328–41. https://doi.org/10.1007/s00216-003-1931-0.pdf.

  29. Starikova T, Shumilova G, Valiotti A. Electrochemical characteristics of membranes based on Mn (III) tetraphenylporphyrin. Russ J Electrochem. 2013;49(9):856–62. https://doi.org/10.1134/S1023193513090115.

    Article  CAS  Google Scholar 

  30. Qin Y, Bakker E. Elimination of dimer formation in InIIIporphyrin-based anion-selective membranes by covalent attachment of the ionophore. Anal Chem. 2004;76(15):4379–86. https://doi.org/10.1021/ac049577f.

  31. Lisak G, Tamaki T, Ogawa T. Dualism of sensitivity and selectivity of porphyrin dimers in electroanalysis. Anal Chem. 2017;89(7):3943–51. https://doi.org/10.1021/ac049577f.

  32. Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M. Intra and extracellular journey of the phytohormone salicylic acid. Front Plant Sci. 2019:423. https://doi.org/10.3389/fpls.2019.00423

  33. Szigeti Z, Vigassy T, Bakker E, Pretsch E. Approaches to improving the lower detection limit of polymeric membrane ion‐selective electrodes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis. 2006;18(13‐14):1254–65. https://doi.org/10.1002/elan.200603539.

  34. Yrjänä V, Saar I, Ilisson M, Kadam SA, Leito I, Bobacka J. Potentiometric carboxylate sensors based on carbazole-derived acyclic and macrocyclic ionophores. Chemosensors. 2020;9(1):4. https://doi.org/10.3390/chemosensors9010004.

    Article  CAS  Google Scholar 

  35. Lisak G. Reliable environmental trace heavy metal analysis with potentiometric ion sensors-reality or a distant dream. Enviro Pollut. 2021;289:117882. https://doi.org/10.1016/j.envpol.2021.117882.

  36. Farhadi K, Maleki R, Hosseinzadeh Yamchi R, Sharghi H, Shamsipur M. [Tetrakis(4-<i>N</i>, <i>N</i>-dimethylaminobenzene)porphyrinato]manganese(III) acetate as a novel carrier for a selective iodide PVC membrane electrode. Anal Sci. 2004;20(5):805–9. https://doi.org/10.2116/analsci.20.805.

    Article  CAS  PubMed  Google Scholar 

  37. Geilfus C-M. The pH of the apoplast: dynamic factor with functional impact under stress. Mol Plant. 2017;10(11):1371–86. https://doi.org/10.1016/j.molp.2017.09.018.

  38. Abakumova R, Valiotti A, Vasil’eva O, Kopylova E, Shumilova G, Mikhel’son K. pH sensitivity of a porphyrin film electrode. Russ J Gen Chem. 2003;73(2):300–7. https://doi.org/10.1023/A:1024764726797.

    Article  CAS  Google Scholar 

  39. Pingarrón JM, Labuda J, Barek J, Brett CM, Camões MF, Fojta M, et al. Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019). Pure Appl Chem. 2020;92(4):641–94. https://doi.org/10.1515/pac-2018-0109.

    Article  CAS  Google Scholar 

  40. He C, Wang Z, Wang Y, Hu R, Li G. Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro. Biosens Bioelectron. 2016;85:679–83. https://doi.org/10.1016/j.bios.2016.05.077.

    Article  CAS  PubMed  Google Scholar 

  41. Paolesse R, Nardis S, Monti D, Stefanelli M, Di Natale C. Porphyrinoids for chemical sensor applications. Chem Rev. 2017;117(4):2517–83. https://doi.org/10.1021/acs.chemrev.6b00361.

  42. Orazem ME, Tribollet B. Electrochemical impedance spectroscopy. New Jersey. 2008:383–9. https://doi.org/10.1038/s43586-021-00039-w.

  43. Anderson EL, Bühlmann P. Electrochemical impedance spectroscopy of ion-selective membranes: artifacts in two-, three-, and four-electrode measurements. Anal Chem. 2016;88(19):9738–45. https://doi.org/10.1021/acs.analchem.6b02641.

  44. Radecka H, Grzybowska I, Radecki J, Jakubowski P, Loteran S, Orlewska C, et al. Salicylate determination in human plasma by ISEs incorporating Mn (III)-porphyrine and Zn (II)-dipyrromethene. Anal Lett. 2007;40(2):387–401. https://doi.org/10.1080/00032710600964767.

    Article  CAS  Google Scholar 

  45. Chai Y, Jiang F, Yuan R, Xu L, Xu W. A highly selective salicylate electrode based on Schiff base complexes of cobalt(III). Anal Lett. 2003;36(11):2379–92. https://doi.org/10.1081/AL-120024329.

    Article  CAS  Google Scholar 

  46. Luo EP, Chai YQ, Yuan R, Dai JY, Xu L. Highly salicylate-selective membrane electrode based on a new thiomacrocyclic Schiff base complex of binuclear copper(II) as neutral carrier. Desalination. 2009;249(2):615–20. https://doi.org/10.1016/j.desal.2008.12.054.

    Article  CAS  Google Scholar 

  47. Ardakani MM, Pourhakkak P, Salavati-Niasari M. Potentiometric coated wire electrode for salicylate based on zinc(II) acetylacetonate. J Braz Chem Soc. 2007;18(4):782–8. https://doi.org/10.1590/S0103-50532007000400017.

    Article  CAS  Google Scholar 

  48. Firooz AliR, Amini MK, Tangestaninejad S, Shahrokhian S. Vanadyl and molybdenyl phthalocyanines as ionophores for salicylate-selective membranes coated on graphite electrodes. Anal Lett. 2001;34(5):661–74. https://doi.org/10.1081/AL-100103210.

  49. Xu W, Yuan R, Chai Y. Salicylate-selective potential response of an electrode based on a copper(II)-phthalocyanine derivative as an ionophore. Chin J Chem. 2009;27(1):99–104. https://doi.org/10.1002/cjoc.200990033.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development Program of China (No.2022YFD2002301). The project was supported by the National Natural Science Foundation of China (Grant No. 61571443).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yi Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1272 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, CX., Li, JH., Yao, JP. et al. All-solid-state potentiometric salicylic acid sensor for in-situ measurement of plant. Anal Bioanal Chem 415, 1979–1989 (2023). https://doi.org/10.1007/s00216-023-04616-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04616-8

Keywords

Navigation