Skip to main content
Log in

Evaluation and Trend of Smart Clothing Research: Visualization Analysis Based on Bibliometric Analysis and Quantitative Statistics

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Smart clothing encompass research in interdisciplinary fields such as industrial design, material applications, computer science, and medical services, and have witnessed rapid development over the past decade. Therefore, for scholars, keeping pace with emerging research trends and the evolution of knowledge is crucial. However, due to the wide array of disciplines involved in smart clothing and the wealth of information they encompass, scholars find it challenging to comprehensively grasp the knowledge structure, making it a time-consuming and highly complex task to identify the forefront of research hotspots. To provide a deeper insight into the knowledge framework and emerging trends in the field of smart clothing, this study is based on bibliometric analysis methods. It combines these methods with visualization analysis tools such as Citespace, VOSviewer, Scimago Graphica, and the AntConc corpus analysis tool. First, a dataset comprising 30,860 SCI papers, including research and review papers is collected. Secondly, a comprehensive analysis is conducted using co-occurrence analysis, core citation analysis, core collaboration analysis, and cutting-edge research analysis. Finally, a systematic knowledge framework for smart clothing is constructed. This study combines quantitative text analysis with knowledge visualization analysis to construct a more diverse and detailed knowledge map of smart clothing from multiple perspectives. Simultaneously, it tracks and summarizes the development of smart clothing, providing researchers in the field with a systematic research context and analysis of emerging trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. E. Bye, A direction for clothing and textile design research. Cloth. Text. Res. J. 28(3), 205–217 (2010)

    Article  Google Scholar 

  2. Yin, Z., H., Gan, L., & Zhang, Y. Electronic fibers/textiles for health‐monitoring: fabrication and application. Advanced Materials Technologies 8(3) (2023): 2200654.

  3. Papatzani, S., D. E. Mouzakis, and P. Koralli. Polymers for High-Performance Flame-Retardant Materials. Specialty Polymers. CRC Press, 2023. 311–325.

  4. Chapman, Stanley D. The cotton industry in the industrial revolution. Macmillan Education UK, 1990.

  5. Fan, Q., Miao, J., Liu, X., Zuo, X., Zhang, W., Tian, M., & Zhang, X. Biomimetic hierarchically silver nanowire interwoven MXene mesh for flexible transparent electrodes and invisible camouflage electronics. Nano Letters 22(2) (2022): 740–750.

  6. Liu, X., Miao, J., Fan, Q., Zhang, W., Zuo, X., Tian, M., & Qu, L. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Advanced Fiber Materials 4(3) (2022): 361–389.

  7. T.M. Fernández-Caramés, P. Fraga-Lamas, Towards the Internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics 7(12), 405 (2018)

    Article  Google Scholar 

  8. Niu, Yan, Liu, H., He, R., Li, Z., Ren, H., Gao, B., & Xu, F. The new generation of soft and wearable electronics for health monitoring in varying environment: From normal to extreme conditions. Materials Today 41 (2020): 219–242.

  9. Wang, Huimin, Zhang, Y., Liang, X., & Zhang, Y. Smart fibers and textiles for personal health management. ACS nano 15(8) (2021): 12497–12508.

  10. Zhang, Yong, Wang, H., Lu, H., Li, S., & Zhang, Y. "Electronic fibers and textiles: Recent progress and perspective. IScience 24(7) (2021).

  11. Zuo, X., Zhang, X., Qu, L., & Miao, J. Smart fibers and textiles for personal thermal management in emerging wearable applications. Advanced Materials Technologies 8(6) (2023): 2201137.

  12. J.A. Rogers, Nanomesh on-skin electronics. Nat. Nanotechnol. 12(9), 839–840 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. Li, Shuyang, Jiang, S., Tian, M., Su, Y., & Li, J. "Mapping the research status and dynamic frontiers of functional clothing: a review via bibliometric and knowledge visualization." International Journal of Clothing Science and Technology 34.5 (2022): 697–715.

  14. M. Tian, J. Li, Knowledge mapping of protective clothing research—a bibliometric analysis based on visualization methodology. Text. Res. J. 89(16), 3203–3220 (2019)

    Article  CAS  Google Scholar 

  15. J.P.A. Ioannidis, Why most published research findings are false. PLoS Med. 2(8), e124 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  16. D. Moher et al., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 8(5), 336–341 (2010)

    Article  PubMed  Google Scholar 

  17. C. Chen, CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inform. Sci. Technol. 57(3), 359–377 (2006)

    Article  Google Scholar 

  18. N. Van Eck, L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2), 523–538 (2010)

    Article  PubMed  Google Scholar 

  19. Hassan-Montero, Y., F. De-Moya-Anegón, and Vicente P. Guerrero-Bote. SCImago Graphica: a new tool for exploring and visually communicating data. Profesional de la información 31(5) (2022).

  20. R. Huang, P. Yan, X. Yang, Knowledge map visualization of technology hotspots and development trends in China’s textile manufacturing industry. IET Collaborative Intell Manuf 3(3), 243–251 (2021)

    Article  Google Scholar 

  21. S. Liu, Y.P. Sun, X.L. Gao, Y. Sui, Knowledge domain and emerging trends in Alzheimer’s disease: a scientometric review based on CiteSpace analysis. Neural Regeneration Res 14(9), 1643 (2019)

    Article  Google Scholar 

  22. A.K. Shukla, M. Janmaijaya, A. Abraham, P.K. Muhuri, Engineering applications of artificial intelligence: a bibliometric analysis of 30 years (1988–2018). Eng. Appl. Artificial Intell. 85, 517–532 (2019)

    Article  Google Scholar 

  23. Park, H., Min S. Park. Cancer information-seeking behaviors and information needs among Korean Americans in the online community. J. Community Health 39 (2014): 213–220.

  24. S. Joss, F. Sengers, D. Schraven, F. Caprotti, Y. Dayot, The smart city as global discourse: Storylines and critical junctures across 27 cities. J. Urban Technol. 26(1), 3–34 (2019)

    Article  Google Scholar 

  25. R. Smail, I.N. Gregory, J.E. Taylor, Qualitative geographies in digital texts: Representing historical spatial identities in the Lake District. Int. J. Human. Arts Comput. 13(1–2), 28–38 (2019)

    Article  Google Scholar 

  26. Anthony, L. AntConc: design and development of a freeware corpus analysis toolkit for the technical writing classroom. IPCC 2005. Proceedings. International Professional Communication Conference, 2005. IEEE, 2005.

  27. Y. Fang, J. Yin, Wu. Bihu, Climate change and tourism: a scientometric analysis using CiteSpace. J. Sustain. Tour. 26(1), 108–126 (2018)

    Article  Google Scholar 

  28. C. Chen, Science mapping: a systematic review of the literature. J. Data Inform. Sci. 2(2), 1–40 (2017)

    Article  CAS  Google Scholar 

  29. W. Wang, Lu. Chang, Visualization analysis of big data research based on Citespace. Soft. Comput. 24, 8173–8186 (2020)

    Article  Google Scholar 

  30. M. Zarley Watson, Y. Ruoh-Nan, An exploratory study of the decision processes of fast versus slow fashion consumers. J. Fashion Marketing Manag. 17(2), 141–159 (2013)

    Article  Google Scholar 

  31. V. Eck, N. Jan, L. Waltman, Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 111, 1053–1070 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eck, V. Jan, N., Waltman, L. Text mining and visualization using VOSviewer. arXiv preprint arXiv:1109.2058 (2011).

  33. M. Xu, P.J. Williams, J. Gu, H. Zhang, Hotspots and trends of technology education in the International Journal of Technology and Design Education: 2000–2018. Int. J. Technol. Design Educ. 30, 207–224 (2020)

    Article  Google Scholar 

  34. H. Zeng, B. Shao, G. Bian, D. Song, X. Li, A survey of research progress and hot front of natural gas load forecasting from technical perspective. IEEE Access 8, 222824–222840 (2020)

    Article  Google Scholar 

  35. C. Chen, L. Leydesdorff, Patterns of connections and movements in dual-map overlays: a new method of publication portfolio analysis. J. Am. Soc. Inf. Sci. 65(2), 334–351 (2014)

    Google Scholar 

  36. D. Chen, G. Zhang, J. Wang, S. Chen, J. Wang, H. Nie, Z. Tang, Mapping trends in moyamoya angiopathy research: a 10-year bibliometric and visualization-based analyses of the Web of Science Core Collection (WoSCC). Front. Neurol. 12, 637310 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  37. C. Chen, CiteSpace: a practical guide for mapping scientific literature (Nova Science Publishers, Hauppauge, NY, USA, 2016)

    Google Scholar 

  38. Synnestvedt, M. B., C. Chen, and J.H. Holmes. CiteSpace II: visualization and knowledge discovery in bibliographic databases. AMIA Annual Symposium Proceedings. Vol. 2005. American Medical Informatics Association, 2005.

  39. X. Su, Xi. Li, Y. Kang, A bibliometric analysis of research on intangible cultural heritage using CiteSpace. SAGE Open 9(2), 2158244019840119 (2019)

    Article  Google Scholar 

  40. H. Yang, C. Kim, A bibliometric analysis of research hotspots and trends in coastal building from 1988 to 2023: based on the web of science and CiteSpace. Buildings 13(8), 1893 (2023)

    Article  Google Scholar 

  41. Müller, B., Reinhardt, J., Strickland, M. T. (2012). Neural networks: an introduction. Springer Science & Business Media.

  42. Wu, J., Jiang, Y., Bao, J., Wang, J. Research Trends on digital flexor tendon: a bibliometric analysis based on CiteSpace. Hand Surgery and Rehabilitation (2023).

  43. C. Chen, The citespace manual. College Comput Inform 1(1), 1–84 (2014)

    CAS  Google Scholar 

  44. K.W. Boyack, R. Klavans, K. Börner, Mapping the backbone of science. Scientometrics 64, 351–374 (2005)

    Article  CAS  Google Scholar 

  45. T. Van Leeuwen, The application of bibliometric analyses in the evaluation of social science research. Who benefits from it, and why it is still feasible. Scientometrics 66, 133–154 (2006)

    Article  Google Scholar 

  46. S. Chen, S. Zhang, M. Galluzzi, F. Li, X. Zhang, X. Yang, P. Huang, Insight into multifunctional polyester fabrics finished by one-step eco-friendly strategy. Chem. Eng. J. 358, 634–642 (2019)

    Article  CAS  Google Scholar 

  47. Xu, N., Wang, G., Tao, Y. Construction of unsaturated systems on the surface of polyamide fibers. Textile Res. J.(2023): 00405175231193778.

  48. M. Dang, Z. Zhang, S. Wang, Properties of wool/spandex core-spun yarn produced on modified woolen spinning frame. Fibers Polymers 7, 420–423 (2006)

    Article  CAS  Google Scholar 

  49. Post, E. R., Orth, M. Smart fabric, or wearable clothing. Digest of Papers. First International Symposium on Wearable Computers. IEEE, 1997.

  50. S. Bhattacharjee, R. Joshi, M. Yasir, A. Adhikari, A.A. Chughtai, D. Heslop, C.R. Macintyre, Graphene-and nanoparticle-embedded antimicrobial and biocompatible cotton/silk fabrics for protective clothing. ACS Appl. Bio Mater. 4(8), 6175–6185 (2021)

    Article  CAS  PubMed  Google Scholar 

  51. H. Li, Du. Zhaoqun, Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications. ACS Appl. Mater. Interfaces 11(49), 45930–45938 (2019)

    Article  CAS  PubMed  Google Scholar 

  52. W.-T.T. Cao, C. Ma, D.S. Mao, J. Zhang, M.G. Ma, F. Chen, MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 29(51), 1905898 (2019)

    Article  CAS  Google Scholar 

  53. Miao, M., Xin, J. H. eds. Engineering of high-performance textiles. Woodhead Publishing, 2017.

  54. D. Kimmer, P. Slobodian, D. Petráš, M. Zatloukal, R. Olejník, P. Sáha, Polyurethane/multiwalled carbon nanotube nanowebs prepared by an electrospinning process. J. Appl. Polymer Sci. 111(6), 2711–2714 (2009)

    Article  CAS  Google Scholar 

  55. A. Asif, M. Rahman, F.I. Farha, Effect of knitted structure on the properties of knitted fabric. Int. J. Sci. Res. (IJSR) 4(1), 1231–1235 (2015)

    Google Scholar 

  56. X. Chen, P. Potiyaraj, CAD/CAM for complex woven fabrics. Part II: multi-layer fabrics. J. Text. Inst. 90(1), 73–90 (1999)

    Article  CAS  Google Scholar 

  57. S. Coyle, Y. Wu, K.T. Lau, D. De Rossi, G. Wallace, D. Diamond, Smart nanotextiles: a review of materials and applications. MRS Bull. 32(5), 434–442 (2007)

    Article  CAS  Google Scholar 

  58. M.D. Syduzzaman, S.U. Patwary, K. Farhana, S. Ahmed, Smart textiles and nano-technology: a general overview. J. Text. Sci. Eng 5(1), 1–7 (2015)

    Google Scholar 

  59. M.A. Shah, B.M. Pirzada, G. Price, A.L. Shibiru, A. Qurashi, Applications of nanotechnology in smart textile industry: a critical review. J. Adv. Res. 38, 55–75 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. A.M. Grancarić, I. Jerković, V. Koncar, C. Cochrane, F.M. Kelly, D. Soulat, X. Legrand, Conductive polymers for smart textile applications. J. Ind. Textiles 48(3), 612–642 (2018)

    Article  Google Scholar 

  61. C. Jin, Z. Bai, MXene-based textile sensors for wearable applications. ACS sensors 7(4), 929–950 (2022)

    Article  CAS  PubMed  Google Scholar 

  62. L. Ma, R. Wu, H. Miao, X. Fan, L. Kong, A. Patil, J. Wang, All-in-one fibrous capacitive humidity sensor for human breath monitoring. Textile Res. J. 91(3–4), 398–405 (2021)

    Article  CAS  Google Scholar 

  63. Z.N. Chai, P. Sun, Y. Huang, C. Zhao, H.J. Fan, W. Mai, Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano 10(10), 9201–9207 (2016)

    Article  CAS  PubMed  Google Scholar 

  64. Q. Shi, J. Sun, C. Hou, Y. Li, Q. Zhang, H. Wang, Advanced functional fiber and smart textile. Adv. Fiber Mater. 1, 3–31 (2019)

    Article  Google Scholar 

  65. K. Singha, J. Kumar, P. Pandit, Recent advancements in wearable & smart textiles: an overview. Mater. Today 16, 1518–1523 (2019)

    CAS  Google Scholar 

  66. S. Tiwari, J.J.P.T. Bijwe, Surface treatment of carbon fibers-a review. Proce. Technol. 14, 505–512 (2014)

    Article  Google Scholar 

  67. L. Bornmann, R. Mutz, Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J. Am. Soc. Inf. Sci. 66(11), 2215–2222 (2015)

    CAS  Google Scholar 

  68. S. Mann, Smart clothing: the shift to wearable computing. Commun. ACM 39(8), 23–24 (1996)

    Article  Google Scholar 

  69. C. Chen, F. Ibekwe-SanJuan, J. Hou, The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. J. Am. Soc. Inform. Sci. Technol. 61(7), 1386–1409 (2010)

    Article  Google Scholar 

  70. P. Lukowicz, T. Kirstein, G. Tröster, Wearable systems for health care applications. Methods Inf. Med. 43(03), 232–238 (2004)

    Article  CAS  PubMed  Google Scholar 

  71. B. Kim, V. Koncar, E. Devaux, Electrical properties of conductive polymers: PET nanocomposites fibres. AUTEX Res. J. 4(1), 9–13 (2004)

    Article  Google Scholar 

  72. A. Kaynak, R. Beltran, Effect of synthesis parameters on the electrical conductivity of polypyrrole-coated poly (ethylene terephthalate) fabrics. Polym. Int. 52(6), 1021–1026 (2003)

    Article  CAS  Google Scholar 

  73. K. Yoon, B.S. Hsiao, B. Chu, Functional nanofibers for environmental applications. J. Mater. Chem. 18(44), 5326–5334 (2008)

    Article  CAS  Google Scholar 

  74. A. Greiner, J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)

    Article  CAS  Google Scholar 

  75. S. Mondal, Phase change materials for smart textiles–an overview. Appl. Therm. Eng. 28(11–12), 1536–1550 (2008)

    Article  CAS  Google Scholar 

  76. D. Crespy, R.M. Rossi, Temperature-responsive polymers with LCST in the physiological range and their applications in textiles. Polym. Int. 56(12), 1461–1468 (2007)

    Article  CAS  Google Scholar 

  77. B.S. Shim, W. Chen, C. Doty, C. Xu, N.A. Kotov, Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett. 8(12), 4151–4157 (2008)

    Article  CAS  PubMed  Google Scholar 

  78. Y. Liu, X. Wang, K. Qi, J.H. Xin, Functionalization of cotton with carbon nanotubes. J. Mater. Chem. 18(29), 3454–3460 (2008)

    Article  CAS  Google Scholar 

  79. M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016)

    Article  CAS  Google Scholar 

  80. T.Q. Trung, N.-E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016)

    Article  CAS  PubMed  Google Scholar 

  81. W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014)

    Article  CAS  PubMed  Google Scholar 

  83. Dong, Kai, Xiao Peng, and Zhong Lin Wang. "Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence." Advanced Materials 32.5 (2020): 1902549.

  84. Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi, W. Xu, Z.L. Wang, Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 10, e1600097 (2016)

    Article  Google Scholar 

  85. Bagherzadeh, R., Abrishami, S., Shirali, A., Rajabzadeh, A. R. Wearable and flexible electrodes in nanogenerators for energy harvesting, tactile sensors, and electronic textiles: NOVEL materials, recent advances, and future perspectives. Mater. Today Sustain. (2022): 100233.

  86. T.M. Dip, A.S. Emu, M.N.H. Nafiz, P. Kundu, H.R. Rakhi, A. Sayam, A.S.M. Sayem, 3D printing technology for textiles and fashion. Text. Prog. 52(4), 167–260 (2020)

    Article  Google Scholar 

  87. V. Petrovic, J. Vicente Haro Gonzalez, O. Jordá Ferrando, J. Delgado Gordillo, J. Ramón Blasco Puchades, L. Portolés Griñan, Additive layered manufacturing: sectors of industrial application shown through case studies. Int. J. Prod. Res. 49(4), 1061–1079 (2011)

    Article  Google Scholar 

  88. Grain, E. 3D printing fashion with recycled polyester: a sustainable journey. (2015).

  89. Håkansson, K .M. O., Henriksson, I. C., de la Peña Vázquez, C., Kuzmenko, V., Markstedt, K., Enoksson, P., Gatenholm, P. Solidification of 3D printed nanofibril hydrogels into functional 3D cellulose structures. Adv. Mater. Technolo. 17 (2016): 1600096.

  90. Saeed, K. A., Harkin-Jones, E., McGarrigle, C., Dixon, D., Shar, M. A., Archer, E. Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractions. Composite Struct. 282 (2022): 115033

  91. Tekinalp, H. L., Kunc, V., Velez-Garcia, G. M., Duty, C. E., Love, L. J., Naskar, A. K., Ozcan, S. Highly oriented carbon fiber–polymer composites via additive manufacturing. Composites Sci. Technol. 105 (2014): 144–150.

  92. Hassan-Montero, Y., Guerrero-Bote, V. P., De-Moya-Anegón, F. Graphical interface of the Scimago Journal and Country Rank: an interactive approach to accessing bibliometric information. El profesional de la información 23(3) (2014).

  93. S. Lin, T. Shen, W. Guo, Evolution and emerging trends of kansei engineering: a visual analysis based on citespace. IEEE Access 9, 111181–111202 (2021)

    Article  Google Scholar 

  94. Pu, X., Liu, M., Chen, X., Sun, J., Du, C., Zhang, Y., Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5) (2017): e1700015.

  95. Guo, Y., Zhang, X. S., Wang, Y., Gong, W., Zhang, Q., Wang, H., Brugger, J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 48 (2018): 152–160.

  96. Cao, R., Pu, X., Du, X., Yang, W., Wang, J., Guo, H., Wang, Z. L. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction. ACS Nano 12(6) (2018): 5190–5196.

  97. Wei, J., Liang, G., Alex, J., Zhang, T., Ma, C. Research progress of energy utilization of agricultural waste in China: Bibliometric analysis by citespace. Sustainability 12(3) (2020): 812.

  98. Liu, X., Chang, H., Li, Y., Huck, W. T., Zheng, Z. Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns. ACS Appl. Mater. Interfaces 2(2) (2010): 529–535.

  99. Zhang, Y., Tian, W., Liu, L., Cheng, W., Wang, W., Liew, K. M., Hu, Y. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem. Eng. J. 372 (2019): 1077–1090.

  100. Y. Li, Z. Zhu, J. Yu, B. Ding, Carbon nanotubes enhanced fluorinated polyurethane macroporous membranes for waterproof and breathable application. ACS Appl. Mater. Interfaces 7(24), 13538–13546 (2015)

    Article  CAS  PubMed  Google Scholar 

  101. Y. Wang, J. Hao, Z. Huang, G. Zheng, K. Dai, C. Liu, C. Shen, Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 126, 360–371 (2018)

    Article  CAS  Google Scholar 

  102. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014)

    Article  CAS  PubMed  Google Scholar 

  103. Y. Zhang, P. He, M. Luo, X. Xu, G. Dai, J. Yang, Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 13, 919–926 (2020)

    Article  CAS  Google Scholar 

  104. J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo, C. Pang, T. Lee, Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27(15), 2433–2439 (2015)

    Article  CAS  PubMed  Google Scholar 

  105. Y. Li, Y.A. Samad, T. Taha, G. Cai, S.Y. Fu, K. Liao, Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain Chem. Eng. 4(8), 4288–4295 (2016)

    Article  CAS  Google Scholar 

  106. Y. Liu, L. Wang, L. Zhao, X. Yu, Y. Zi, Recent progress on flexible nanogenerators toward self-powered systems. InfoMat 2(2), 318–340 (2020)

    Article  CAS  Google Scholar 

  107. J.-N. Kim, J. Lee, T.W. Go, A. Rajabi-Abhari, M. Mahato, J.Y. Park, I.K. Oh, Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator. Nano Energy 75, 104904 (2020)

    Article  CAS  Google Scholar 

  108. J. Wang, C. Wang, P. Cai, Y. Luo, Z. Cui, X.J. Loh, X. Chen, Artificial sense technology: emulating and extending biological senses. ACS Nano 15(12), 18671–18678 (2021)

    Article  CAS  PubMed  Google Scholar 

  109. Yang, Y., Cao, Z., He, P., Shi, L., Ding, G., Wang, R., Sun, J. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 66 (2019): 104134.

  110. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)

    Article  CAS  PubMed  Google Scholar 

  111. M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, K. Kim, Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7(12), 803–809 (2012)

    Article  CAS  PubMed  Google Scholar 

  112. F. Xu, Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24(37), 5117–5122 (2012)

    Article  CAS  PubMed  Google Scholar 

  113. D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin, L. Piao, M. Choi, Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014)

    Article  CAS  PubMed  Google Scholar 

  114. Lam Po Tang, S., G. K. Stylios. An overview of smart technologies for clothing design and engineering. Int. J. Clothing Sci. Technol. 18(2) (2006): 108–128.

  115. E. Håkansson, A. Amiet, A. Kaynak, Electromagnetic shielding properties of polypyrrole/polyester composites in the 1–18 GHz frequency range. Synth. Met. 156(14–15), 917–925 (2006)

    Article  Google Scholar 

  116. E. Gasana, P. Westbroek, J. Hakuzimana, K. De Clerck, G. Priniotakis, P. Kiekens, D. Tseles, Electroconductive textile structures through electroless deposition of polypyrrole and copper at polyaramide surfaces. Surface Coatings Technol. 201(6), 3547–3551 (2006)

    Article  CAS  Google Scholar 

  117. C.J. Thompson, G.G. Chase, A.L. Yarin, D.H. Reneker, Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23), 6913–6922 (2007)

    Article  CAS  Google Scholar 

  118. E. Onder, N. Sarier, E. Cimen, Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochim. Acta 467(1–2), 63–72 (2008)

    Article  CAS  Google Scholar 

  119. X. Guan, G. Zheng, K. Dai, C. Liu, X. Yan, C. Shen, Z. Guo, Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl. Mater. Interfaces 8(22), 14150–14159 (2016)

    Article  CAS  PubMed  Google Scholar 

  120. C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C.Y. Foo, P.S. Lee, Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014)

    Article  CAS  PubMed  Google Scholar 

  121. M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, N.S. Sariciftci, Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7(10), 811–816 (2013)

    Article  CAS  Google Scholar 

  122. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012)

    Article  CAS  PubMed  Google Scholar 

  123. Q.-W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie, L. Liu, Z.Z. Yu, Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019)

    Article  Google Scholar 

  124. X. Ding, D. Clifton, N. Ji, N.H. Lovell, P. Bonato, W. Chen, Y.T. Zhang, Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic. IEEE Rev. Biomed. Eng. 14, 48–70 (2020)

    Article  Google Scholar 

  125. S.J. Lim, J.H. Bae, S.J. Jang, J.Y. Lim, J.H. Ko, Development of textile-based pressure sensor and its application. Fibers Polymers 19, 2622–2630 (2018)

    Article  Google Scholar 

  126. Y.A. Qadri, A. Nauman, Y.B. Zikria, A.V. Vasilakos, S.W. Kim, The future of healthcare internet of things: a survey of emerging technologies. IEEE Commun. Surveys Tutorials 22(2), 1121–1167 (2020)

    Article  Google Scholar 

  127. A.H.M. Aman, W.H. Hassan, S. Sameen, Z.S. Attarbashi, M. Alizadeh, L.A. Latiff, IoMT amid COVID-19 pandemic: application, architecture, technology, and security. J. Netw. Comput. Appl. 174, 102886 (2021)

    Article  Google Scholar 

  128. H. Li, Du. Zhaoqun, MXene fiber-based wearable textiles in sensing and energy storage applications. Fibers and Polymers 24(4), 1167–1182 (2023)

    Article  CAS  Google Scholar 

  129. P. Tesinova, D. Atalie, Thermal comfort properties of sport fabrics with dependency on structure parameters and maintenance. Fibers Polymers 23(4), 1150–1160 (2022)

    Article  Google Scholar 

  130. S. Zhang, L. Fu, Z. Yang, M. Jing, Z. Zhang, S. Xiang, R. Wang, Response surface methodology for optimizing the preparation process of cellulose acetate/polylactic acid nonwoven surgical gown material. Fibers Polymers 22(4), 928–935 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Jieyang Polytechnic [grant numbers 2023JYCKY03].

Funding

This work was supported by Jieyang Polytechnic [grant numbers 2023JYCKY03].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Zhe-Hui Lin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Statement

This article does not contain any studies involving human or animal subjects.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, ZH., Chen, PJ. Evaluation and Trend of Smart Clothing Research: Visualization Analysis Based on Bibliometric Analysis and Quantitative Statistics. Fibers Polym 25, 1479–1511 (2024). https://doi.org/10.1007/s12221-024-00521-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00521-8

Keywords

Navigation