Skip to main content
Log in

Meta-materials of Re-entrant Negative Poisson’s Ratio Structures Made from Fiber-Reinforced Plastics: A Short Review

  • Review
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Negative Poisson’s ratio (NPR) structure is a common mechanical meta-material that has great potential in impact protection engineering due to its special indentation resistance. There are many studies on the NPR structures, but there are still few reports on the NPR structures with the parent materials of fiber-reinforced plastics (FRPs). As a type of advanced functional composites, the FRPs have higher specific modulus and specific energy absorption, and have become the most popular lightweight materials. In this review, the characteristics of NPR structures and FRPs were first analyzed and then the existing structure shapes, material types, manufacturing processes and mechanical behaviors were reported and discussed. Finally, the future direction of the mechanical meta-materials with the NPR structure was explored based on the current engineering requirements and preparation technologies. This review is expected to attract more scholars to pay more attention to the NPR structures fabricated by the FRPs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Datasets related to this article can be found in the corresponding reference.

References

  1. Z. Changfang, Z. Zhitan, Z. Changxing, Z. Hongwei, Z. Kebin, Z. Jianlin, R. Jie, Le. Guigao, Research on compression properties of unidirectional carbon fiber reinforced epoxy resin composite (UCFREP). J. Compos. Mater. 55(11), 1447–1458 (2021). https://doi.org/10.1177/0021998320972176

    Article  ADS  CAS  Google Scholar 

  2. C.F. Zhao, R. Ren, C.B. Sun, J. Ren, J.L. Zhong, Z.D. Zhang, Compression mechanics for carbon-fiber reinforced epoxy resin composites under in-plane and out-of-plane quasi-static and dynamic loadings. Mech. Compos. Mater. 59(3), 507–520 (2023). https://doi.org/10.1007/s11029-023-10112-y

    Article  ADS  CAS  Google Scholar 

  3. C. Zhao, Z. Zhou, J. Ren, C. Xing, K. Zhan, B. He, J. Zhong, G. Le, Investigation of the compression mechanics with strain rate-dependent: forged/laminated carbon fiber-epoxy resin composites. Compos. Mech. Comput. Appl. Int. J. 11(4), 341–367 (2020). https://doi.org/10.1615/CompMechComputApplIntJ.2020033979

    Article  CAS  Google Scholar 

  4. C.F. Zhao, J.L. Zhong, H.X. Wang, C.Q. Chen, Complete constitutive model of CFRP including continuous damage in low strain rate compression and temperature generation in high strain rate impact. Polymer Composites. 28037 (2023). https://doi.org/10.1002/pc.28037

  5. K. Zhang, W. Li, Y. Zheng, W. Yao, C. Zhao, Dynamic constitutive model of ultra-high molecular weight polyethylene (UHMWPE): considering the temperature and strain rate effects. Polymers (Basel). 12(7), 1561 (2020). https://doi.org/10.3390/polym12071561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. K. Zhang, W. Li, Y. Zheng, W. Yao, C. Zhao, Compressive properties and constitutive model of semicrystalline polyethylene. Polymers 13(17), 2895 (2021). https://doi.org/10.3390/POLYM13172895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M.S. Abed, P.S. Ahmed, J.K. Oleiwi, B.M. Fadhil, Low velocity impact of Kevlar and ultra high molecular weight polyethylene (UHMWPE) reinforced epoxy composites. Multidiscip. Model. Mater. Struct. 16(6), 1617–1630 (2020). https://doi.org/10.1108/MMMS-09-2019-0164

    Article  CAS  Google Scholar 

  8. N. Shaari, A.M. Jumahat, M.K. Razif, Impact resistance properties of Kevlar/glass fiber hybrid composite laminates. Jurnal Teknologi 76(3), 5520 (2015). https://doi.org/10.11113/jt.v76.5520

    Article  Google Scholar 

  9. J.L. Zhong, C.F. Zhao, J. Ren, X.X. Liu, Z.D. Zhang, A constitutive model for carbon fiber reinforced epoxy resin laminate under compression load: considering the initial non-linearity. Appl. Compos. Mater. 29, 629–649 (2022). https://doi.org/10.1007/s10443-021-09979-8

    Article  ADS  Google Scholar 

  10. C. Zhao, Z. Zhou, J. Ren, C. Xing, J. Zhong, K. Zhang, B. He, Research on energy-absorption and failure of carbon fiber reinforced epoxy resins double cone structure. J. Phys. Conf. Ser. 1507(6), 062006 (2020). https://doi.org/10.1088/1742-6596/1507/6/062006

    Article  CAS  Google Scholar 

  11. C. Zhao, Z. Zhou, X. Liu, Z. Tang, K. Zhang, P. Zhang, J. Ren, Z. Liu, G. Le, J. Zhong, The in-plane stretching and compression mechanics of Negative Poisson’s ratio structures: concave hexagon, star shape, and their combination. J. Alloys Compd. 859(Apr), 157840 (2021). https://doi.org/10.1016/j.jallcom.2020.157840

    Article  CAS  Google Scholar 

  12. C. Huang, L. Chen, Negative Poisson’s ratio in modern functional materials. Adv. Mater. 28(37), 8079–8096 (2016). https://doi.org/10.1002/adma.201601363

    Article  CAS  PubMed  Google Scholar 

  13. K.E. Evans, M.A. Nkansah, I.J. Hutchinson, Auxetic foams: modelling negative Poisson’s ratios. Acta Metall. Et Mater. 42(4), 1289–1294 (1994). https://doi.org/10.1016/0956-7151(94)90145-7

    Article  Google Scholar 

  14. C.F. Zhao, C.L. Zhao, J.L. Zhong, H.W. Zhu, K.B. Zhang, Y.Z. Liu, Compressive mechanical behavior for surface auxetic structures. J. Alloys Compd. 894(Feb), 162427 (2022). https://doi.org/10.1016/j.jallcom.2021.162427

    Article  CAS  Google Scholar 

  15. C.F. Zhao, J.L. Zhong, K.L. Goh, X.X. Liu, Mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structures. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2022.12.157

    Article  Google Scholar 

  16. Z. Changfang, Z. Zhitan, Z. Kebin, Z. Hongwei, Z. Jianlin, S. Chuanbin, R. Jie, Le. Guigao, Experimental study on tensile mechanics of arrow combination structure with carbon fiber-epoxy resin composite. Arab. J. Sci. Eng. 46, 2891–2900 (2021). https://doi.org/10.1007/s13369-020-05202-1

    Article  CAS  Google Scholar 

  17. C.F. Zhao, H.P. Lee, K.L. Goh, J.L. Zhong, K.B. Zhang, Z.D. Zhang, J. Ren, G.G. Le, Preparation process and compression mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structure (CFRP+NPRS). Compos. Struct. 292(July), 115667 (2022). https://doi.org/10.1016/j.compstruct.2022.115667

    Article  CAS  Google Scholar 

  18. C.F. Zhao, H.P. Lee, K.L. Goh, J.L. Zhong, K.B. Zhang, Z.D. Zhang, J. Ren, G.G. Le, Corrigendum to ‘Preparation process and compression mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structure (CFRP + NPRS)’ [Compos. Struct. 292 (2022) 115667]. Compos. Struct. 302(Dec), 116186 (2022). https://doi.org/10.1016/j.compstruct.2022.116186

    Article  Google Scholar 

  19. C.F. Zhao, K.L. Goh, H.P. Lee, C. Yin, K.B. Zhang, J.L. Zhong, Experimental study and finite element analysis on energy absorption of carbon fiber reinforced composite auxetic structures filled with aluminum foam. Compos. Struct. 303(Jan), 116319 (2023). https://doi.org/10.1016/j.compstruct.2022.116319

    Article  CAS  Google Scholar 

  20. Y. Chen, L. Ye, Designing and tailoring effective elastic modulus and negative Poisson’s ratio with continuous carbon fibres using 3D printing. Compos. A Appl. Sci. Manuf. 150(Nov), 106625 (2021). https://doi.org/10.1016/j.compositesa.2021.106625

    Article  CAS  Google Scholar 

  21. C. Quan, B. Han, Z. Hou, Z. Qi, X. Tian, T.J. Lu, 3d printed continuous fiber reinforced composite auxetic honeycomb structures. Compos. B Eng. 187, 107858 (2020). https://doi.org/10.1016/j.compositesb.2020.107858

    Article  CAS  Google Scholar 

  22. H. Tang, Q. Sun, Z. Li, X. Su, W. Yan, Longitudinal compression failure of 3D printed continuous carbon fiber reinforced composites: an experimental and computational study. Compos. A Appl. Sci. Manuf. 146, 106416 (2021). https://doi.org/10.1016/j.compositesa.2021.106416

    Article  CAS  Google Scholar 

  23. K. Wang, H. Long, Y. Chen, M. Baniassadi, Y. Rao, Y. Peng, Heat-treatment effects on dimensional stability and mechanical properties of 3D printed continuous carbon fiber-reinforced composites. Compos. A Appl. Sci. Manuf. 147, 106460 (2021). https://doi.org/10.1016/j.compositesa.2021.106460

    Article  CAS  Google Scholar 

  24. X. Tian, T. Liu, C. Yang, Q. Wang, D. Li, Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. A Appl. Sci. Manuf. 88, 198–205 (2016). https://doi.org/10.1016/j.compositesa.2016.05.032

    Article  CAS  Google Scholar 

  25. L.C. Guo, C.F. Zhao, Y.L. Zhao, X. Wang, A reasonable corrigendum on the previous article about the re-entrant and star-shape auxetic structures by theory and simulation. J. Alloys Compd. 931(1), 167490 (2023). https://doi.org/10.1016/j.jallcom.2022.167490

    Article  CAS  Google Scholar 

  26. Z. Zhang, Bo. Song, Y. Yao, L. Zhang, X. Wang, J. Fan, Y. Shi, Bioinspired, simulation-guided design of polyhedron metamaterial for simultaneously efficient heat dissipation and energy absorption. Adv. Mater. Technol. 7, 2200076 (2022). https://doi.org/10.1002/admt.202200076

    Article  CAS  Google Scholar 

  27. K. Günaydın, C. Rea, Z. Kazancı, Energy absorption enhancement of additively manufactured hexagonal and re-entrant (auxetic) lattice structures by using multi-material reinforcements. Addit. Manuf. 59(Part A, Nov), 103076 (2022). https://doi.org/10.1016/j.addma.2022.103076

    Article  CAS  Google Scholar 

  28. K.D. Krzysztof, G. Ruben, N.G. Joseph, 3D composite metamaterial with magnetic inclusions exhibiting negative stiffness and auxetic behaviour. Mater. Des. 187, 108403 (2020). https://doi.org/10.1016/j.matdes.2019.108403

    Article  Google Scholar 

  29. T. Mei, Z. Meng, K. Zhao, C.Q. Chen, A mechanical metamaterial with reprogrammable logical functions. Nat. Commun. 12, 7234 (2021). https://doi.org/10.1038/s41467-021-27608-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. X. Wang, Z. Meng, C.Q. Chen, Robotic materials transformable between elasticity and plasticity. Adv. Sci. 10, 2206637 (2023). https://doi.org/10.1002/advs.202206637

    Article  CAS  Google Scholar 

  31. J. Fan, L. Zhang, S. Wei, Z. Zhang, S.-K. Choi, Bo. Song, Y. Shi, A review of additive manufacturing of metamaterials and developing trends. Mater. Today 50, 303–328 (2021). https://doi.org/10.1016/j.mattod.2021.04.019

    Article  Google Scholar 

  32. Z. Zhang, L. Zhang, Y. Dong, H. Chen, Y. Guo, Mechanical properties of negative Poisson’s ratio metamaterial units and honeycomb structures with cosine-like re-entrant structure. Mater. Lett. 331(Jan.), 133451 (2023). https://doi.org/10.1016/j.matlet.2022.133451

    Article  CAS  Google Scholar 

  33. A. Roychoudhury, S. Singamneni, S. Das, Modification of a re-entrant sinusoidal auxetic structure with a central stiffener. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.03.296

    Article  Google Scholar 

  34. C. Coulais, As the extension, so the twist. Science 358(6366), 994–995 (2017). https://doi.org/10.1126/science.aaq0818

    Article  ADS  CAS  PubMed  Google Scholar 

  35. T. Frenzel, M. Kadic, M. Wegener, Three-dimensional mechanical metamaterials with a twist. Science 358(6366), 1072–1074 (2017). https://doi.org/10.1126/science.aao4640

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Y. Gao, Q. Wu, X. Wei, Z. Zhou, J. Xiong, Composite tree-like re-entrant structure with high stiffness and controllable elastic anisotropy. Int. J. Solids Struct. 206(Dec.), 170–182 (2020). https://doi.org/10.1016/j.ijsolstr.2020.09.003

    Article  Google Scholar 

  37. L. Wei, X. Zhao, Q. Yu, G. Zhu, A novel star auxetic honeycomb with enhanced in-plane crushing strength. Thin Walled Struct. 149(Apr.), 106623 (2020). https://doi.org/10.1016/j.tws.2020.106623

    Article  Google Scholar 

  38. L. Ai, X.L. Gao, An analytical model for star-shaped Re-entrant lattice structures with the orthotropic symmetry and negative Poisson’s ratios. Int. J. Mech. Sci. 145, 158–170 (2018). https://doi.org/10.1016/j.ijmecsci.2018.06.027

    Article  Google Scholar 

  39. F. Jiang, S. Yang, C. Qi, H. Liu, Two plateau characteristics of re-entrant auxetic honeycomb along concave direction. Thin Walled Struct. 79(Oct.), 109665 (2022). https://doi.org/10.1016/j.tws.2022.109665

    Article  Google Scholar 

  40. Y. Jin, Y. Qie, N. Li, N. Li, Study on elastic mechanical properties of novel 2D negative Poisson’s ratio structure: re-entrant hexagon nested with star-shaped structure. Compos. Struct. 301(Dec.), 116065 (2022). https://doi.org/10.1016/j.compstruct.2022.116065

    Article  Google Scholar 

  41. N.K. Choudhry, B. Panda, S. Kumar, In-plane energy absorption characteristics of a modified re-entrant auxetic structure fabricated via 3D printing. Compos. Part B Eng. 228(Jan.), 109437 (2022). https://doi.org/10.1016/j.compositesb.2021.109437

    Article  Google Scholar 

  42. L. Shen, Z. Wang, X. Wang, K. Wei, Negative Poisson’s ratio and effective Young’s modulus of a vertex-based hierarchical re-entrant honeycomb structure. Int. J. Mech. Sci. 206(Sep.), 106611 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106611

    Article  Google Scholar 

  43. L. Shen, X. Wang, L. Zhendong, K. Wei, Z. Wang, Elastic properties of an additive manufactured three-dimensional vertex-based hierarchical re-entrant structure. Mater. Des. 216(Apr.), 110527 (2022). https://doi.org/10.1016/j.matdes.2022.110527

    Article  Google Scholar 

  44. E. Etemadi, M. Zhang, K. Li, M. Bashtani, M.M.P. Ho, D. Tahir, H. Hu, Load-bearing characteristics of 3D auxetic structures made with carbon fiber reinforced polymer composite. Compos. Struct. 319(Sep.), 117206 (2023). https://doi.org/10.1016/j.compstruct.2023.117206

    Article  CAS  Google Scholar 

  45. J. Shen, K. Liu, Q. Zeng, J. Ge, Z. Dong, J. Liang, Design and mechanical property studies of 3D re-entrant lattice auxetic structure. Aerosp. Sci. Technol. 118(Nov.), 106998 (2021). https://doi.org/10.1016/j.ast.2021.106998

    Article  Google Scholar 

  46. K.P. Logakannan, V. Ramachandran, J. Rengaswamy, D. Ruan, Dynamic performance of a 3D re-entrant structure. Mech. Mater. 148(Sep.), 103503 (2020). https://doi.org/10.1016/j.mechmat.2020.103503

    Article  Google Scholar 

  47. B. Xia, X. Huang, L. Chang, R. Zhang, Z. Liao, Z. Cai, The arrangement patterns optimization of 3D honeycomb and 3D re-entrant honeycomb structures for energy absorption. Mater. Today Commun. 35(Jun.), 105996 (2023). https://doi.org/10.1016/j.mtcomm.2023.105996

    Article  CAS  Google Scholar 

  48. Y. Gao, Z. Zhou, H. Hu, J. Xiong, New concept of carbon fiber reinforced composite 3D auxetic lattice structures based on stretching-dominated cells. Mech. Mater. 152(Jan.), 03661 (2021). https://doi.org/10.1016/j.mechmat.2020.103661

    Article  Google Scholar 

  49. K.P. Logakannan, V. Ramachandran, J. Rengaswamy, D. Ruan, Stiffened star-shaped auxetic structure with tri-directional symmetry. Compos. Struct. 279(Jan.), 114773 (2022). https://doi.org/10.1016/j.compstruct.2021.114773

    Article  Google Scholar 

  50. F. Jiang, S. Yang, C. Qi, C. Ding, Quasi-static crushing response of additive manufactured 3D reentrant circular auxetics with different polymer matrices. Mech. Adv. Mater. Struct. 30(18), 3826–3846 (2023). https://doi.org/10.1080/15376494.2022.2084193

    Article  CAS  Google Scholar 

  51. C. Qi, F. Jiang, A. Remennikov, L. Pei, J. Liu, J. Wang, X. Liao, S. Yang, Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs. Compos. Part B Eng. 197(Sep.), 108117 (2020). https://doi.org/10.1016/j.compositesb.2020.108117

    Article  Google Scholar 

  52. F. Jiang, S. Yang, C. Qi, Quasi-static crushing response of a novel 3D re-entrant circular auxetic Metamaterial. Compos. Struct. 300(Nov.), 116066 (2022). https://doi.org/10.1016/j.compstruct.2022.116066

    Article  Google Scholar 

  53. C. Qi, F. Jiang, S. Yang, A. Remennikov, Multi-scale characterization of novel re-entrant circular auxetic honeycombs under quasi-static crushing. Thin Walled Struct. 169(Dec.), 108314 (2021). https://doi.org/10.1016/j.tws.2021.108314

    Article  Google Scholar 

  54. C. Qi, F. Jiang, S. Yang, A. Remennikov, S. Chen, C. Ding, Dynamic crushing response of novel re-entrant circular auxetic honeycombs: numerical simulation and theoretical analysis. Aerosp. Sci. Technol. 124(May), 107548 (2022). https://doi.org/10.1016/j.ast.2022.107548

    Article  Google Scholar 

  55. Z. Changfang, R. Rui, W. Yi, Y. Guang, H. Bin, Z. Kebin, Z. Jianlin, Crack propagation for glass fiber reinforced laminates containing flame retardant: based on single-edge tensile loading. Mater. Plast. 59(2), 88–99 (2022). https://doi.org/10.37358/MP.22.2.5588

    Article  Google Scholar 

  56. C. Zhao, R. Ren, J. Zhong, K.L. Goh, K. Zhang, Z. Zhang, G. Le, Intralaminar crack propagation of glass fiber reinforced composite laminate. Structures 41(Jul.), 787–803 (2022). https://doi.org/10.1016/j.istruc.2022.05.064

    Article  Google Scholar 

  57. Z. Li, X. Wang, L. Ma, L. Wu, L. Wang, Auxetic and failure characteristics of composite stacked origami cellular materials under compression. Thin Walled Struct. 184(Mar.), 110453 (2023). https://doi.org/10.1016/j.tws.2022.110453

    Article  Google Scholar 

  58. Z.Y. Li, X.T. Wang, L. Ma, L.Z. Wu, Study on the mechanical properties of CFRP composite auxetic structures consist of corrugated sheets and tubes. Compos. Struct. 292(Jul.), 115655 (2022). https://doi.org/10.1016/j.compstruct.2022.115655

    Article  CAS  Google Scholar 

  59. L. Ma, Y.L. Chen, J.S. Yang, X.T. Wang, G.L. Ma, R. Schmidt, K.-U. Schröder, Modal characteristics and damping enhancement of carbon fiber composite auxetic double-arrow corrugated sandwich panels. Compos. Struct. 203(Nov.), 539–550 (2018). https://doi.org/10.1016/j.compstruct.2018.07.006

    Article  Google Scholar 

  60. M. Sarafraz, H. Seidi, F. Kakavand, N.S. Viliani, Free vibration and buckling analyses of a rectangular sandwich plate with an auxetic honeycomb core and laminated three-phase polymer/GNP/fiber face sheets. Thin Walled Struct. 183(Feb.), 110331 (2023). https://doi.org/10.1016/j.tws.2022.110331

    Article  Google Scholar 

  61. S. Yu, Z. Liu, X. Cao, J. Liu, W. Huang, Y. Wang, The compressive responses and failure behaviors of composite graded auxetic re-entrant honeycomb structure. Thin Walled Struct. 87(1), 110721 (2023). https://doi.org/10.1016/j.tws.2023.110721

    Article  Google Scholar 

  62. Xu. Weiheng, S. Jambhulkar, D. Ravichandran, Y. Zhu, M. Kakarla, Q. Nian, B. Azeredo, X. Chen, K. Jin, B. Vernon, D.G. Lott, J.L. Cornella, O. Shefi, G. Miquelard-Garnier, Y. Yang, K. Song, 3D printing-enabled nanoparticle alignment: a review of mechanisms and applications. Small 17, 2100817 (2021). https://doi.org/10.1002/smll.202100817

    Article  CAS  Google Scholar 

  63. U. Detamornrat, E. McAlister, A.R.J. Hutton, E. Larrañeta, R.F. Donnelly, The role of 3D printing technology in microengineering of microneedles. Small 18, 2106392 (2022). https://doi.org/10.1002/smll.202106392

    Article  CAS  Google Scholar 

  64. C. Hu, J. Dong, J. Luo, Q. Qinghua, S. Guangyong, 3D printing of chiral carbon fiber reinforced polylactic acid composites with negative Poisson’s ratios. Compos. Part B Eng. 201(Nov.), 108400 (2020). https://doi.org/10.1016/j.compositesb.2020.108400

    Article  CAS  Google Scholar 

  65. N. Chikkanna, K.P. Logakannan, S. Krishnapillai, V. Ramachandran, Quasi-static compression performance of material extrusion enabled re-entrant diamond auxetic metamaterial: fabrication, tuning the geometrical parameters and fibre reinforcements. Thin Walled Struct. 179(Oct.), 109550 (2022). https://doi.org/10.1016/j.tws.2022.109550

    Article  Google Scholar 

  66. N. Chikkanna, S. Krishnapillai, V. Ramachandran, In-plane and out-of-plane quasi-static compression performance enhancement of 3D printed re-entrant diamond auxetic metamaterial with geometrical tuning and fiber reinforcement. Defence Technol. 25(Jul.), 1–17 (2023). https://doi.org/10.1016/j.dt.2022.11.009

    Article  Google Scholar 

  67. M.H.N. Pour, G. Payganeh, M. Tajdari, Experimental and numerical study on the mechanical behavior of 3D printed re-entrant auxetic structure filled with carbon nanotubes-reinforced polymethylmethacrylate foam. Mater Today Commun. 34(Mar.), 104936 (2023). https://doi.org/10.1016/j.mtcomm.2022.104936

    Article  CAS  Google Scholar 

  68. K. Dong, M. Panahi-Sarmad, Z. Cui, H. Xiayan, X. Xueliang, Electro-induced shape memory effect of 4D printed auxetic composite using PLA/TPU/CNT filament embedded synergistically with continuous carbon fiber: a theoretical and experimental analysis. Compos. Part B Eng. 220(Sep.), 108994 (2021). https://doi.org/10.1016/j.compositesb.2021.108994

    Article  CAS  Google Scholar 

  69. K. Dong, Y. Wang, Z. Wang, W. Qiu, P. Zheng, Y. Xiong, Reusability and energy absorption behavior of 4D printed continuous fiber-reinforced auxetic composite structures. Compos. Part A Appl. Sci. Manuf. 169(Jun.), 107529 (2023). https://doi.org/10.1016/j.compositesa.2023.107529

    Article  CAS  Google Scholar 

  70. Z. Meng, Z. Ouyang, C.Q. Chen, Multi-step metamaterials with two phases of elastic and plastic deformation. Compos. Struct. 271(Sep.), 114152 (2021). https://doi.org/10.1016/j.compstruct.2021.114152

    Article  Google Scholar 

  71. G. Zhou, Z.D. Ma, G.Y. Li et al., Design optimization of a novel NPR crash box based on multi-objective genetic algorithm. Struct. Multidiscip. Optim. 54(3), 673–684 (2016). https://doi.org/10.1007/s00158-016-1452-z

    Article  Google Scholar 

  72. W. Chunyan, W. Weiwei, Z. Wanzhong et al., Structure design and multi-objective optimization of a novel NPR bumper system. Compos. B Eng. 153, 78–96 (2018). https://doi.org/10.1016/j.compositesb.2018.07.024

    Article  Google Scholar 

  73. H. Hassanin, A. Abena, M.A. Elsayed et al., 4D printing of NiTi auxetic structure with improved ballistic performance. Micromachines 11(8), 745 (2020). https://doi.org/10.3390/mi11080745

    Article  PubMed  PubMed Central  Google Scholar 

  74. C. Qi, A. Remennikov, L.Z. Pei et al., Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations. Compos. Struct. 180(Nov.), 161–178 (2017). https://doi.org/10.1016/j.compstruct.2017.08.020

    Article  Google Scholar 

  75. J. Liu, X. Yao, Z. Wang et al., A flexible porous chiral auxetic tracheal stent with ciliated epithelium. Acta Biomater. 124(3), 153–165 (2021). https://doi.org/10.1016/j.actbio.2021.01.044

    Article  CAS  PubMed  Google Scholar 

  76. L. Chow, K.L. Yick, K.H. Wong, 3D printing auxetic architectures for hypertrophic scar therapy. Macromol. Mater. Eng. 307, 2100866 (2022). https://doi.org/10.1002/mame.202100866

    Article  CAS  Google Scholar 

  77. H. Hu, M. Zhang, Y. Liu, Applications of auxetic textiles. Auxetic Text. (2019). https://doi.org/10.1016/B978-0-08-102211-5.00010-3

    Article  Google Scholar 

  78. X. Li, W. Peng, W. Wu et al., Auxetic mechanical metamaterials: from soft to stiff. Int. J. Extreme Manuf. 5(4), 042003 (2023). https://doi.org/10.1088/2631-7990/ace668

    Article  Google Scholar 

  79. A. Wang, Z. Meng, C. Chen, Non-Hermitian topology in static mechanical metamaterials. Sci. Adv. 9, eadf7299 (2023). https://doi.org/10.1126/sciadv.adf7299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Funded Postdoctoral Researcher Program of China (Grant number: GZC20231315, corresponding to Changfang Zhao) and the National Natural Science Foundation of China (Grant number: 12002169, corresponding to Jianlin Zhong).

Author information

Authors and Affiliations

Authors

Contributions

JZ: project administration, supervision, founding, writing-original draft, investigation. CZ: writing-original draft preparation, reviewing and editing, investigation, methodology, conceptualization, formal analysis. YL: data curation, formal analysis, investigation, conceptualization. JR, CY, ZZ: reviewing and editing, methodology, investigation, conceptualization, formal analysis.

Corresponding author

Correspondence to Changfang Zhao.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Zhao, C., Liu, Y. et al. Meta-materials of Re-entrant Negative Poisson’s Ratio Structures Made from Fiber-Reinforced Plastics: A Short Review. Fibers Polym 25, 395–406 (2024). https://doi.org/10.1007/s12221-023-00455-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00455-7

Keywords

Navigation