Skip to main content
Log in

Experimental Investigations of Mechanical and Dynamic Mechanical Analysis of Bio-synthesized CuO/Ramie Fiber-Based Hybrid Biocomposite

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The utilization of biosynthesis in the production of copper oxide nanoparticles from ‘Urtica Dioica’ (UD) leaves is gaining increasing global popularity due to its sustainable, efficient, and cost-effective nature. In this study, copper nitrate served as the precursor for obtaining the copper oxide (CuO) nanoparticles. The focus of the research was on the development of bio-epoxy and a hybrid bio-epoxy/Ramie fiber-based laminate with the incorporation of copper oxide nanoparticles. To create the bio-epoxy-based organic fiber materials, the hand-layup molding process was adapted, with different quantities of nanoCuO particles (ranging from 0 to 7.5 wt%) being added. The study comprehensively examined the mechanical, physical, and thermal effects of incorporating fibers of a uniform 30 mm size into the green epoxy laminate. The characterization of the produced CuO nanoparticles was conducted through various analytical techniques, including UV spectroscopy (UVS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). Notably, the absorption peaks at 234 and 362 nm were attributed to the inter-band transitions of the core electrons within the copper metal present in CuO nanoparticles. Furthermore, the XRD pattern indicated an average crystallite size of the synthesized nanoparticles at 7.34 nm, while the strong bands in the FTIR spectrum at 916, 797, and 743 cm–1 provided evidence of phenolic and alcoholic compounds within the leaf extract. Mechanical testing revealed significant improvements in the tensile strength (72 MPa to 167 MPa), bending strength (26.41 MPa to 56.18 MPa), hardness (27.82 to 34.1 Barcol), and Izod impact strength (3.86 kJ/m2 to 12.01 kJ/m2) characteristics of all integrated hybrid fibers with the inclusion of nanopowder up to 4.5 wt%. Consequently, the mechanical properties of the fiber were enhanced, and the temperature-dependent behaviors of the storage modulus, loss modulus, and damping factor (tan δ) showed favorable changes. This enhanced stiffness and durability within the fiber series can be attributed to their improved load-bearing and stress-distribution capabilities within the biocomposites. Furthermore, the effective dispersion and strong matrix/nanoCuO/ramie fiber adhesion contributed to the creation of a robust structure, resulting in improved mechanical and temperature-dependent properties and ultimately addressing the thermal performance issues associated with Ramie fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data and Code Availability

The data used to support the findings of this study are included in the article. Should further data or information be required, these are available from the corresponding author upon request.

References

  1. L. Medina, R. Schledjewski, A.K. Schlarb, Compos. Sci. Technol. 69, 1404 (2009)

    Article  CAS  Google Scholar 

  2. P. Balakrishnan, M. J. John, L. Pothen, M. S. Sreekala, and S. Thomas, in Advanced Composite Materials for Aerospace Engineering (Elsevier, 2016), pp. 365–383

  3. C.S. Boland, R. De Kleine, G.A. Keoleian, E.C. Lee, H.C. Kim, T.J. Wallington, J. Ind. Ecol. 20, 179 (2016)

    Article  CAS  Google Scholar 

  4. V. Ganesan, V. Shanmugam, B. Kaliyamoorthy, S. Sanjeevi, S.K. Shanmugam, V. Alagumalai, Y. Krishnamoorthy, M. Försth, G. Sas, S.M.J. Razavi, O. Das, Polymers 13, 2471 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. R. Mansor, A. H. Nurfaizey, N. Tamaldin, and M. N. A. Nordin, in Biomass, Biopolymer-Based Materials, and Bioenergy (Elsevier, 2019), pp. 203–224

  6. Ç. Gül, E.D. Kocak, Sustain. Des. Text. Fash. (2021). https://doi.org/10.1007/978-981-16-2466-7_2

    Article  Google Scholar 

  7. J. Zhang, C. Guan, W.-H. Kang, L. Tong, Q. Xue, Compos. Struct. 202, 967 (2018)

    Article  Google Scholar 

  8. Y. Du, N. Yan, and M. T. Kortschot, in Biofiber Reinforcements in Composite Materials (Elsevier, 2015), pp. 104–137

  9. B. K. Hadi and Y. S. Nuril, in J Phys Conference Series (IOP Publishing, 2018), p. 12006

  10. K. Kapila, S. Samanta, and S. Kirtania, in Recent advances in mechanical engineering: select proceedings of ICRAME 2020 (Springer, 2021), pp. 839–848

  11. S. Habibie, N. Suhendra, B.A. Setiawan, M. Hamzah, N. Aisah, D.A. Fitriani, R. Tasomara, M. Anggaravidya, Int. Jf Compos. Mater. 11, 43 (2021)

    CAS  Google Scholar 

  12. D. Rajesh, N. Lenin, R. Cep, P. Anand, M. Elangovan, Polymers 14, 4887 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. X. Song, F. Song, X.-M. Ding, J.-M. Wu, X.-H. Wang, F. Wang, R. Feng, X.-L. Wang, Y.-Z. Wang, Ind. Crops Prod. 194, 116281 (2023)

    Article  CAS  Google Scholar 

  14. Y. Sun, L. Bao, C. Luo, A. Xu, C. Chen, Ind. Crops Prod. 187, 115525 (2022)

    Article  CAS  Google Scholar 

  15. A. N. Netravali, Natural Fibers, Plastics and Composites 321 (2004)

  16. D. Letchumanan, S. P. M. Sok, S. Ibrahim, N. H. Nagoor, and N. M. Arshad, (2021)

  17. A. Saravanan, P.S. Kumar, S. Karishma, D.-V.N. Vo, S. Jeevanantham, P.R. Yaashikaa, C.S. George, Chemosphere 264, 128580 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. P. Manogar, J.E. Morvinyabesh, P. Ramesh, G.D. Jeyaleela, V. Amalan, J.S. Ajarem, A.A. Allam, J.S. Khim, N. Vijayakumar, Mater. Lett. 311, 131569 (2022)

    Article  CAS  Google Scholar 

  19. N. Rabiee, M. Bagherzadeh, M. Kiani, A. M. Ghadiri, F. Etessamifar, A. H. Jaberizadeh, A. Shakeri (2020)

  20. A.A. Bhutto, J.A. Baig, T.G. Kazi, R. Sierra-Alvarez, K. Akhtar, S. Perveen, H.I. Afridi, H.E. Ali, A. Hol, S. Samejo, Ceram. Int. 55, 3345–3358 (2023)

    Google Scholar 

  21. O.J. Gbadeyan, S. Adali, G. Bright, B. Sithole, P. Lekha, J. Compos. Mater. 55, 3345 (2021)

    Article  ADS  CAS  Google Scholar 

  22. H. S. Devi, M. A. Boda, S. Rubab, S. Parveen, A. H. Wani, M. A. Shah, Biosynthesis and Antifungal Activities of CuO and Al2O3 Nanoparticles, 1st ed. (Elsevier B.V., 2021)

  23. V. Ganesan and B. Kaliyamoorthy, J. Nat Fibers (2020).

  24. S. Rajeshkumar, N.T. Nandhini, K. Manjunath, P. Sivaperumal, G.K. Prasad, S.S. Alotaibi, S.M. Roopan, J. Mol. Struct. 1242, 130724 (2021)

    Article  CAS  Google Scholar 

  25. S.K. Karuppannan, R. Ramalingam, S.B. Mohamed Khalith, M.J.H. Dowlath, G.I. Darul Raiyaan, K.D. Arunachalam, Biocatal. Agricult. Biotechnol. 31, 101904 (2021)

    Article  CAS  Google Scholar 

  26. B. Sundararajan, G. Mahendran, R. Thamaraiselvi, B.D. Ranjith Kaumari, Bull. Mater. Sci. 39, 423 (2016)

    Article  CAS  Google Scholar 

  27. K. Saravanakumar, S. Shanmugam, N.B. Varukattu, D. MubarakAli, K. Kathiresan, M.-H. Wang, J. Photochem. Photobiol. B. 190, 103 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. E. Nagaraj, K. Karuppannan, P. Shanmugam, S. Venugopal, J. Cluster Sci. 30, 1157 (2019)

    Article  CAS  Google Scholar 

  29. P. Kuppusamy, S. Ilavenil, S. Srigopalram, G.P. Maniam, M.M. Yusoff, N. Govindan, K.C. Choi, J. Clean. Prod. 141, 1023 (2017)

    Article  CAS  Google Scholar 

  30. M. Garg, G.H. Abumeri, F. Abdi, Mater. Eval. 68, 542 (2010)

    CAS  Google Scholar 

  31. X. Yang, Y. Sun, D. Shi, J. Liu, Mater. Sci. Eng. A 528, 4830 (2011)

    Article  Google Scholar 

  32. T. Ahmad, R. Ahmad, M. Kamran, B. Wahjoedi, I. Shakoor, F. Hussain, F. Riaz, Z. Jamil, S. Isaac, Q. Ashraf, Iran. Polym. J. 24, 21 (2015)

    Article  CAS  Google Scholar 

  33. M. Radetić, D. Marković, Cellulose 26, 8971 (2019)

    Article  Google Scholar 

  34. M.K. Hassanzadeh-Aghdam, M. Hasanzadeh, R. Ansari, Iranian Journal of Science and Technology. Trans. Mech. Eng. 44, 299 (2020)

    Google Scholar 

  35. G. Demircan, M. Kisa, M. Ozen, B. Aktas, Iran. Polym. J. 29, 253 (2020)

    Article  CAS  Google Scholar 

  36. T. Uygunoğlu, B. Şimşek, Ö.B. Ceran, Ö. Eryeşil, J. Build. Eng. 44, 102641 (2021)

    Article  Google Scholar 

  37. N.M. Barkoula, B. Alcock, N.O. Cabrera, T. Peijs, Polym. Polym. Compos. 16, 101 (2008)

    Article  CAS  Google Scholar 

  38. V. G., J. S. Chohan, M. A. S. A., S. R., S. M. S., N. M., S. K. S., S. S. V., and E. R. D., Silicon (2023)

  39. P. Khalili, B. Blinzler, R. Kádár, R. Bisschop, M. Försth, P. Blomqvist, Materials 12, 2648 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. O.B. Gutiérrez-Acosta, S. Arriaga, V.A. Escobar-Barrios, S. Casas-Flores, A. Almendarez-Camarillo, J. Hazard. Mater. 201–202, 202 (2012)

    Article  PubMed  Google Scholar 

  41. C. Xia, J. Yu, S.Q. Shi, Y. Qiu, L. Cai, H.F. Wu, H. Ren, X. Nie, H. Zhang, Compos. B Eng. 114, 121 (2017)

    Article  CAS  Google Scholar 

  42. T. Singh, B. Gangil, L. Ranakoti, A. Joshi, Polym. Compos. 42, 2396 (2021)

    Article  CAS  Google Scholar 

  43. M.S. Chowdary, G. Raghavendra, M.S.R.N. Kumar, S. Ojha, V. Boggarapu, SILICON 14, 539 (2022)

    Article  CAS  Google Scholar 

  44. R. Rajasekar, K. Pal, G. Heinrich, A. Das, C.K. Das, Mater. Des. 30, 3839 (2009)

    Article  CAS  Google Scholar 

  45. V. G and N. L, Journal of Materials Research and Technology (2023)

  46. G. Velmurugan and K. Babu, Materials Research Express 7, (2020)

  47. M. Rajaei, N.K. Kim, S. Bickerton, D. Bhattacharyya, Compos. B Eng. 165, 65 (2019)

    Article  CAS  Google Scholar 

  48. A. Atmakuri, A. Palevicius, A. Vilkauskas, and G. Janusas, Polymers 12, (2020)

  49. S. Sanjeevi, V. Shanmugam, S. Kumar, V. Ganesan, G. Sas, D.J. Johnson, M. Shanmugam, A. Ayyanar, K. Naresh, R.E. Neisiany, O. Das, Sci. Rep. 11, 1 (2021)

    Article  ADS  Google Scholar 

  50. V. Alagumalai, V. Shanmugam, N.K. Balasubramanian, Y. Krishnamoorthy, V. Ganesan, M. Försth, G. Sas, F. Berto, A. Chanda, O. Das, Polymers 13, 2591 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. A. D. Latha, A. S. Kumar, S. J. Singh, and C. Velmurugan, Silicon (2023)

  52. W.A.A. Sadik, A.G.M. El Demerdash, R. Abbas, A. Bedir, J. Polym. Environ. 29, 1600 (2021)

    Article  CAS  Google Scholar 

  53. G. Rajeshkumar, S.A. Seshadri, S. Ramakrishnan, M.R. Sanjay, S. Siengchin, K.C. Nagaraja, Polym. Compos. 42, 3687 (2021)

    Article  CAS  Google Scholar 

  54. N. Lakshmaiya, V. Ganesan, P. Paramasivam, S. Dhanasekaran, Appl Sci (Switzerland) 12, 13030 (2022)

    CAS  Google Scholar 

  55. V. G, S. S. V, K. R. M, E. R. D, N. M, and N. T J, Silicon (2023).

  56. S. D. Ambekar and V. K. Tripathi, (n.d.).

  57. F. Ashenai Ghasemi, A. Ghorbani, I. Ghasemi, Mech. Compos. Mater. 53, 131 (2017)

    Article  ADS  CAS  Google Scholar 

  58. N. Lakshmaiya, S. Kaliappan, P.P. Patil, V. Ganesan, J.A. Dhanraj, C. Sirisamphanwong, T. Wongwuttanasatian, S. Chowdhury, S. Channumsin, M. Channumsin, K. Techato, Coatings 12, 1675 (2022)

    Article  CAS  Google Scholar 

  59. A. Etaati, S. Pather, Z. Fang, H. Wang, Compos. B Eng. 62, 19 (2014)

    Article  CAS  Google Scholar 

  60. K.M. Almgren, E.K. Gamstedt, Compos. Interfaces 17, 845 (2010)

    Article  ADS  CAS  Google Scholar 

  61. G. Velmurugan, K. Babu, M. Nagaraj, and A. J. P. Kumar, Silicon (2023)

  62. L.A. Pothan, Z. Oommen, S. Thomas, Compos. Sci. Technol. 63, 283 (2003)

    Article  CAS  Google Scholar 

  63. S. Dong, R. Gauvin, Polym. Compos. 14, 414 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Institute of Agricultural Engineering, Saveetha School of Engineering (SIMATS), Tamil Nadu, India for the technical assistance.

Funding

No funding was received for this research work.

Author information

Authors and Affiliations

Authors

Contributions

GV and SSK: conceptualization and methodology. JSC, TM, and AJPK: experimental design. DER and KS: investigation. MN and PB: testing and evaluations.

Corresponding author

Correspondence to G. Velmurugan.

Ethics declarations

Conflicts of Interest

The authors declare no competing interests.

Ethics Approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velmurugan, G., Kumar, S.S., Chohan, J.S. et al. Experimental Investigations of Mechanical and Dynamic Mechanical Analysis of Bio-synthesized CuO/Ramie Fiber-Based Hybrid Biocomposite. Fibers Polym 25, 587–606 (2024). https://doi.org/10.1007/s12221-023-00432-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00432-0

Keywords

Navigation