Skip to main content
Log in

Calculation of Minimum Plate Distance in Electrostatic Flocking Process Based on Dynamics Research

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electrostatic flocking technology has been widely used, but there are few theoretical studies on the flocking process. In this paper, the key factors affecting the motion of the flock are investigated by analyzing the dynamics of the flock in an electrostatic field. The obtained equation of motion is solved using MATLAB. The influence of flock specification on the rotation and translation process is analyzed. At a constant electric field intensity, the rotation time is linearly positively correlated with the flock’s linear density; the maximum translational velocity is linearly positively correlated with the flock length-to-diameter ratio; and the minimum plate distance is linearly positively correlated with the flock’s linear density. The flock’s maximum translational velocity is proportional to the electric field intensity, and the change in the electric field intensity does not affect the rotation time and the minimum plate distance. The paper also provides the minimum plate distance of eight kinds of nylon flock under the electric field intensity of 50 kV/10 cm. Based on the calculation results, it is suggested that the flocking test first calculates the minimum plate distance based on the flock’s linear density. Then the optimal electric field intensity should be determined according to the flocked fabric’s flocking effect and fastness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data are available from the authors upon reasonable request.

References

  1. F.A. Woodruff, Developments in coating and electrostatic flocking. J. Coat. Fabr. 22, 290–297 (1993)

    Article  CAS  Google Scholar 

  2. A. McCarthy, R. Shah, J.V. John, D. Brown, J.W. Xie, Understanding and utilizing textile-based electrostatic flocking for biomedical applications. Appl. Phys. Rev. 8, 041326 (2021). https://doi.org/10.1063/5.0070658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Z.Q. Ye, J.B. Xu, J.K. Ma, R. Sun, X.L. Zeng, F. Deng, P.P. Xin, L. Zhang, Aligned-carbon-fibre/silicone-rubber composite with high thermal conductivity fabricated by double-stacked electrostatic flocking method. 21st Int Conf Electron Pack Technol (2020). https://doi.org/10.1109/ICEPT50128.2020.9202515

    Article  Google Scholar 

  4. Z.F. Yu, S. Wei, J.D. Guo, Fabrication of aligned carbon-fiber/polymer TIMs using electrostatic flocking method. J. Mater. Sci.: Mater Electron. 30, 10233–10243 (2019). https://doi.org/10.1007/s10854-019-01360-7

    Article  CAS  Google Scholar 

  5. K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, K. Hata, Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv. Mater. 26, 5857–5862 (2014). https://doi.org/10.1002/adma.201401736

    Article  CAS  PubMed  Google Scholar 

  6. M.R. Li, L.M. Qin, K.T. Ou, Z.Y. Xiong, H.Y. Zheng, Y.Y. Sun, Electrostatic flocking MnO2 nanofiber electrode for long cycling stability supercapacitors. Int. J. Energ. Res. 46, 7946–7956 (2022). https://doi.org/10.1002/er.7692

    Article  CAS  Google Scholar 

  7. X.Y. Xu, K. Wang, H. Guo, G.H. Sun, R.R. Chen, J. Yu, J.Y. Liu, C.G. Lin, J. Wang, Zwitterionic modified electrostatic flocking surfaces for diatoms and mussels resistance. J. Colloid. Interf. Sci. 588, 9–18 (2020). https://doi.org/10.1016/j.jcis.2020.12.036

    Article  CAS  Google Scholar 

  8. E. Gossla, A. Bernhardt, R. Tonndorf, D. Aibibu, C. Cherif, M. Gelinsky, Anisotropic Chitosan scaffolds generated by electrostatic flocking combined with alginate hydrogel support chondrogenic differentiation. Int. J. Mol. Sci. 22, 9341 (2021). https://doi.org/10.3390/IJMS22179341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. T. Takeshita, M. Yosihda, A. Ouchi, A. Hinoki, H. Uchida, T. Kobayashi, Development of multi-lead ECG measurement wear using electrostatic flocking technology. ICEP-IAAC (2018). https://doi.org/10.23919/ICEP.2018.8374690

    Article  Google Scholar 

  10. M. Zhou, S.X. Zhai, T.T. Song, H. Zhao, Z.Z. Fan, F.Y. Ge, Y.P. Zhao, B. Xu, Z.S. Cai, Chemically and physically modified flame-retardant silicone-acrylic emulsion adhesive for electrostatic flocking. J. Inorg. Organomet. 11, 30 (2020). https://doi.org/10.1007/s10904-020-01659-7

    Article  CAS  Google Scholar 

  11. Z.M. Zhang, Study on the preparation and properties of carbon black masterbatches for nylon 6 fibers. J. of Silk. 60(4), 44–50 (2023). https://doi.org/10.3969/j.issn.1001-7003.2023.04.007

    Article  Google Scholar 

  12. X.H. Zhang, B. Yang, Y.H. Zhao, J.J. Su, Effect of production process of magnetic induction polyamide 6 fiber on its properties. Adv. Text. Technol. 30(4), 89–93 (2022). https://doi.org/10.19398/j.att.202108015

    Article  Google Scholar 

  13. B.L. Liu, X.Y. Li, Y.G. Li, Structure and properties of nano-Zno modified PA6 fibers. J. of Silk. 59(8), 30–35 (2022). https://doi.org/10.3969/j.issn.1001-7003.2022.08.005

    Article  Google Scholar 

  14. L.F. Liu, H. Xie, L.D. Cheng, J.Y. Yu, S.Z. Yang, Optimal design of superfine polyamide fabric by electrostatic flocking technology. Text. Res. J. 81(1), 3–9 (2011). https://doi.org/10.1177/0040517510376269

    Article  CAS  Google Scholar 

  15. B.I. Bobkov, M.I. Glazov, The electrostatic field in the charging dynamics and motion forms of fibers (Textile Industry Press, Beijing, 1983), pp.40–43, 95

    Google Scholar 

  16. Q. Zhang, Y. Xu, Motion laws of fibers in an electric field: first report—motion equations and experimental methods. J China Text Univ. 13(3), 9–18 (1987)

    Google Scholar 

  17. H.Q. Liu, Y.L. Zhao, Concise basic physics volume 1 mechanics and thermology, 2nd edn. (Wuhan University Press, Wuchang, 2000), pp.177–212, 213

    Google Scholar 

  18. M.F. Jiang, X.Z. Feng, L. Chen, A brief introduction to physics (Soochow University Press, Suzhou, 2017), pp.17–19

    Google Scholar 

  19. T.T. Bypavlov, Aerodynamics of textile processes and equipment (Textile Industry Press, Beijing, 1988), pp.14–15

    Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province of China for its support (LY21E030020, LGG22E030011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodan Pan.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Huang, Z., Jin, W. et al. Calculation of Minimum Plate Distance in Electrostatic Flocking Process Based on Dynamics Research. Fibers Polym 25, 383–393 (2024). https://doi.org/10.1007/s12221-023-00420-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00420-4

Keywords

Navigation