Skip to main content
Log in

Flexibility and Thermal Storage Properties of Polyurethane Adhesive Supported Phase Change Composites Based on Polyurethane Phase Change Materials

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polyurethane phase change materials (PUPCMs) have been extensively applied in smart textiles and wearable electronic devices because of their excellent energy storage capacity. To realize the flexibility of PUPCMs for certain deformation and compact contact with objects, suitable support structures have been chosen to prepare polyurethane phase change composites (PUFPCCs) with energy storage capacity and device-level flexibility. In this work, PUPCM was prepared by the prepolymer method with polyethylene glycol (PEG) as the soft segment, 4,4-dicyclohexylmethane diisocyanate (HMDI) and 1,2-hexanediol as the hard segment. And polyurethane-based adhesives (PUA) were chosen to provide a support structure for PUFPCCs by physically blending and casting with prepared PUPCM. PUFPCCs showed good flexibility attributed to the film-forming performance of polyurethane-based adhesive in the composites. The chemical structure, crystallization properties, phase transformation properties and thermal stability of the prepared PUPCM and PUFPCCs were investigated via Fourier transform infrared spectroscopy (FT-IR), 1H NMR spectroscopy, X-ray diffraction (XRD), polarizing optical microscope (POM), differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis respectively. The phase change temperature of PUFPCCs ranged from 36 to 40 ℃. The maximum enthalpy value of PUFPCCs was up to 40 J/g for daily application. Moreover, the thermal stability of PUPCM was improved attribute to the support structure of PUA in PUFPCCs. Therefore, the prepared PUFPCCs have great potential for application in flexible wearable devices due to their excellent flexibility, suitable phase transition temperature close to human body temperature, high enthalpy value and improved thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.M. Umair, Y. Zhang, K. Iqbal, S.F. Zhang, B.T. Tang, Appl. Energy 235, 846 (2019). https://doi.org/10.1016/j.apenergy.2018.11.017

    Article  CAS  Google Scholar 

  2. Y.H. Diao, L. Liang, Y.H. Zhao, Z.Y. Wang, F.W. Bai, Appl. Energy 233–234, 894 (2019). https://doi.org/10.1016/j.apenergy.2018.10.024

    Article  Google Scholar 

  3. H. Jouhara, A. Żabnieńska-Góra, N. Khordehgah, D. Ahmad, T. Lipinski, Int. J. Thermofluids (2020). https://doi.org/10.1016/j.ijft.2020.100039

    Article  Google Scholar 

  4. U. Berardi, A.A. Gallardo, Energy Build. 199, 402 (2019). https://doi.org/10.1016/j.enbuild.2019.07.014

    Article  Google Scholar 

  5. L. Olson, C. Lothian, U. Aden, H. Lagercrantz, N.J. Robertson, F. Setterwall, Materials (2021). https://doi.org/10.3390/ma14237106

    Article  PubMed  PubMed Central  Google Scholar 

  6. J.Y. Wang, J. Xu, Y. He, J. Energy Storage (2021). https://doi.org/10.1016/j.est.2021.103094

    Article  Google Scholar 

  7. W. Wu, W. Wu, S. Wang, Appl. Energy 236, 10 (2019). https://doi.org/10.1016/j.apenergy.2018.11.071

    Article  CAS  Google Scholar 

  8. A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, S. Van Dessel, Appl. Therm. Eng. 127, 1427 (2017). https://doi.org/10.1016/j.applthermaleng.2017.08.161

    Article  Google Scholar 

  9. A. Jamekhorshid, S.M. Sadrameli, M. Farid, Renew. Sustain. Energ Rev. 31, 531 (2014). https://doi.org/10.1016/j.rser.2013.12.033

    Article  CAS  Google Scholar 

  10. G. Peng, G. Dou, Y. Hu, Y. Sun, Z. Chen, Adv. Polym. Tech. (2020). https://doi.org/10.1155/2020/9490873

    Article  Google Scholar 

  11. Z. Liu, C. Zang, Z. Ju, D. Hu, Y. Zhang, J. Jiang, C. Liu, J Clean Prod (2020). https://doi.org/10.1016/j.jclepro.2019.119565

    Article  Google Scholar 

  12. H. Zhang, L. Wang, S. Xi, H. Xie, W. Yu, Renew. Energy 175, 307 (2021). https://doi.org/10.1016/j.renene.2021.05.019

    Article  CAS  Google Scholar 

  13. E. Anastasiou, K.O. Lorentz, G.J. Stein, P.D. Mitchell, Lancet Infect Dis. 14, 553 (2014). https://doi.org/10.1016/s1473-3099(14)70794-7

    Article  PubMed  Google Scholar 

  14. F. Chen, M. Wolcott, Sol. Energy Mater. Sol. Cells 137, 79 (2015). https://doi.org/10.1016/j.solmat.2015.01.010

    Article  CAS  Google Scholar 

  15. Y. Zhang, J. Xiu, B. Tang, R. Lu, S. Zhang, AIChE J. 64, 688 (2018). https://doi.org/10.1002/aic.15956

    Article  CAS  Google Scholar 

  16. T. Wu, Y. Hu, H. Rong, C. Wang, Energy (2021). https://doi.org/10.1016/j.energy.2021.119900

    Article  PubMed  Google Scholar 

  17. W. Aftab, A. Mahmood, W. Guo, M. Yousaf, H. Tabassum, X. Huang, Z. Liang, A. Cao, R. Zou, Energy Storage Mater. 20, 401 (2019). https://doi.org/10.1016/j.ensm.2018.10.014

    Article  Google Scholar 

  18. L. Li, Z. Wu, S. Yuan, X.B. Zhang, Energy Environ. Sci. 7, 2101 (2014). https://doi.org/10.1039/c4ee00318g

    Article  CAS  Google Scholar 

  19. X. Zhao, D. Zou, S. Wang, Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.134231

    Article  PubMed  Google Scholar 

  20. D. Hu, L. Han, W. Zhou, P. Li, Y. Huang, Z. Yang, X. Jia, Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.135056

    Article  PubMed  PubMed Central  Google Scholar 

  21. J. Shi, W. Aftab, Z. Liang, K. Yuan, M. Maqbool, H. Jiang, F. Xiong, M. Qin, S. Gao, R. Zou, J. Mater 8, 20133 (2020). https://doi.org/10.1039/c9ta13925g

    Article  CAS  Google Scholar 

  22. D.G. Prajapati, B. Kandasubramanian, Polym. Rev 60, 389 (2020). https://doi.org/10.1080/15583724.2019.1677709

    Article  CAS  Google Scholar 

  23. N. Sun, X.Q. Li, J. Mater. 56, 15937 (2021). https://doi.org/10.1007/s10853-021-06290-6

    Article  CAS  Google Scholar 

  24. Y. Ahmadi, K.H. Kim, S. Kim, M. Tabatabaei, Energy Storage Mater 30, 74 (2020). https://doi.org/10.1016/j.ensm.2020.05.003

    Article  Google Scholar 

  25. P. Cheng, Z. Tang, Y. Gao, P. Liu, C. Liu, X. Chen, iScience 25, 104226 (2022). https://doi.org/10.1016/j.isci.2022.104226

    Article  PubMed  PubMed Central  Google Scholar 

  26. Y. Yang, W. Kong, X. Cai, Polym Advan Technol 32, 4162 (2021). https://doi.org/10.1002/pat.5425

    Article  CAS  Google Scholar 

  27. S. Fang, C. Li, L. Gao, Q. Sun, J. Cui, L. Zhou, C. Yang, H. Yu, ACS Polym. Mater. 1, 2924 (2019). https://doi.org/10.1021/acsapm.9b00627

    Article  CAS  Google Scholar 

  28. N. Gao, T. Tang, H. Xiang, W. Zhang, Y. Li, C. Yang, T. Xia, X. Liu, Sol. Energy Mater. Sol. Cells (2022). https://doi.org/10.1016/j.solmat.2022.111831

    Article  Google Scholar 

  29. W.B. Kong, Y. Lei, Y.Y. Jiang, J.X. Lei, J. Therm. Anal. Calorim. 130, 1011 (2017). https://doi.org/10.1007/s10973-017-6467-1

    Article  CAS  Google Scholar 

  30. R. Jing, H.Z. Zhang, C.W. Huang, F.C. Su, B.J. Wu, Z.X. Sun, F. Xu, L.X. Sun, Y.P. Xia, H.L. Peng, X.C. Lin, B. Li, Y.J. Zou, H.L. Chu, P.R. Huang, E.R. Yan, Colloid Surf. A (2022). https://doi.org/10.1016/j.colsurfa.2021.128193

    Article  Google Scholar 

  31. L. Jiang, Y. Lei, Q.F. Liu, J.X. Lei, Energy 193, 1174 (2020). https://doi.org/10.1016/j.energy.2019.116802

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Key Scientific Research Project of Shaanxi Provincial Department of Science and Technology (No. 2022GY-365), Key Scientific Research Project of Shaanxi Provincial Department of Education (No. 21JY014), Science and Technology Guidance Project of China National Textile and Apparel Council (No. 2020039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhao Shi.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Shi, W., Liu, J. et al. Flexibility and Thermal Storage Properties of Polyurethane Adhesive Supported Phase Change Composites Based on Polyurethane Phase Change Materials. Fibers Polym 24, 3061–3074 (2023). https://doi.org/10.1007/s12221-023-00300-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00300-x

Keywords

Navigation