Skip to main content
Log in

Ultrathin Polymer Fibers Coated with an Amorphous SiO2–CaO–P2O5 Bioactive Powders for Biomedical Applications

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The development of new biomaterials with improved properties is a trend in tissue regeneration. In this way, an innovative approach is employed in this work for obtaining polymer fibers coated with nanoparticles resulting from the simultaneous application of poly (lactic acid) (PLA)/polycaprolactone (PCL) electrospinning and bioactive particles from an amorphous multicomponent silica–calcium–phosphorus system (AMS) electrospraying. The osteogenesis was evaluated in vitro and in vivo using male rats, in which total protein, alkaline phosphatase, and biological performance through histological and histomorphometric analysis were discussed. The morphological results assessed by scanning electron microscopy showed a mesh of PLA/PCL fibers associated with AMS. The spraying of 17.44% of AMS particles in the PLA/PCL electrospun fibers decreased the Young’s modulus and tensile strength. However, the amount of AMS particles sprayed was enough to promote a reduction of 17.8% in the measured contact angle values. Phosphatase alkaline higher mean value was also observed in the fibers when in contact with the AMS, but nonstatistical difference was observed (p > 0.05). It was possible to observe the presence of mineralized nodules deposited on the bottom of the plate and between the fibers. The newly formed bone into defect filled with PLA/PCL-AMS fibers was higher than that observed in the control group. These findings suggest PLA/PCL-AMS fibers as a multifunctional composite system that may be attractive for both bone and dental tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data will be available on request.

References

  1. H.E. Skallevold, D. Rokaya, Z. Khurshid, M.S. Zafar, Int. J. Mol. Sci. (2019). https://doi.org/10.3390/ijms20235960

    Article  PubMed  PubMed Central  Google Scholar 

  2. T. Zhao, J. Zhang, X. Gao, D. Yan, Z. Gu, Y. Xu, J. Mater. Chem. B. (2022). https://doi.org/10.1039/D2TB01182D

    Article  PubMed  PubMed Central  Google Scholar 

  3. S.-J. Seo, H.-W. Kim, J.-H. Lee, J. Nanomater. (2016). https://doi.org/10.1155/2016/5931946

    Article  Google Scholar 

  4. Y. Zhang, X. Liu, L. Zeng, J. Zhang, J. Zuo, J. Zou, J. Ding, X. Chen, Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201903279

    Article  PubMed  PubMed Central  Google Scholar 

  5. T. Zhu, Y. Cui, M. Zhang, D. Zhao, G. Liu, J. Ding, Bioact. Mater. (2020). https://doi.org/10.1016/bioactmat.2020.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  6. Q.P. Pham, U. Sharma, A.G. Mikos, Tissue Eng. 12, 1197 (2006). https://doi.org/10.1089/ten.2006.12.1197

    Article  CAS  PubMed  Google Scholar 

  7. M. Li, M.J. Mondrinos, M.R. Gandhi, F.K. Ko, A.S. Weiss, P.I. Lelkes, Biomaterials 26, 5999 (2005). https://doi.org/10.1016/j.biomaterials.2005.03.030

    Article  CAS  PubMed  Google Scholar 

  8. K.M. Raghvendra, L. Sravanthi, Mod. Chem. Appl. (2017). https://doi.org/10.4172/2329-6798.1000206

    Article  Google Scholar 

  9. F. Anjum, N.A. Agabalyan, H.D. Sparks, N.L. Rosin, M.S. Kallos, J. Biernaskie, Sci. Rep. 7, 10291 (2017). https://doi.org/10.1038/s41598-017-10735-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. G.-Y. Liao, L. Chen, X.-Y. Zeng, X.-P. Zhou, X.-L. Xie, E.-J. Peng, Z.-Q. Ye, Y.-W. Mai, J. Appl. Polym. Sci. 120, 2154 (2011). https://doi.org/10.1002/app.33398

    Article  CAS  Google Scholar 

  11. A. Rather, T.U. Wani, R.S. Khan, B. Pant, M. Park, F.A. Sheikh, Int. J. Mol. Sci. (2021). https://doi.org/10.3390/ijms22084017

    Article  PubMed  PubMed Central  Google Scholar 

  12. F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Biomaterials (2005). https://doi.org/10.1016/j.biomaterials.2004.06.051

    Article  PubMed  Google Scholar 

  13. K.H. Lee, H.Y. Kim, M.S. Khil, Y.M. Ra, D.R. Lee, Polymer (2003). https://doi.org/10.1016/S0032-3861(02)00820-0

    Article  Google Scholar 

  14. P.X. Ma, Mater Today. (2004). https://doi.org/10.1016/S1369-7021(04)00233-0

    Article  Google Scholar 

  15. B.M. Holzapfel, J.C. Reichert, J.T. Schantz, U. Gbureck, L. Rackwitz, U. Nöth, F. Jakob, M. Rudert, J. Groll, D.W. Hutmacher, Adv. Drug Deliv. Rev. (2012). https://doi.org/10.1016/j.addr.2012.07.009

    Article  PubMed  Google Scholar 

  16. M.N. Rahaman, R.F. Brown, B.S. Bal, D.E. Day, JSES. (2006). https://doi.org/10.1053/j.sart.2006.09.003

    Article  Google Scholar 

  17. A.L. Andrade, R.Z. Domingues, Qui. Nova. (2006). https://doi.org/10.1590/S0100-40422006000100019

    Article  Google Scholar 

  18. Y.F. Goh, M. Akram, A. Alshemary, R. Hussain, App. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.06.054

    Article  Google Scholar 

  19. L. Siqueira, F.R. Passador, M.M. Costa, A.O. Lobo, E. Sousa, Mater. Sci. Eng. C. (2015). https://doi.org/10.1016/j.msec.2015.03.055

    Article  Google Scholar 

  20. L. Siqueira, F.R. Passador, A.O. Lobo, E.S. Trichês, Polímeros: Ciência e Tecnologia. (2019). https://doi.org/10.1590/0104-1428.02118

    Article  Google Scholar 

  21. G.F. Fonseca, S.O.M. Avelino, D.C.R. Mello, R.F. Prado, T.M.B. Campos, L.M.R. Vasconcellos, E.S. Trichês, A.L.S. Borges, J. Mater. Sci. Mater. Med. (2020). https://doi.org/10.1007/s10856-020-06382-w

    Article  PubMed  Google Scholar 

  22. F.V. Ferreira, C.G. Otoni, J.H. Lopes, L.P. de Souza, L.H.I. Mei, L.M.F. Lona, K. Lozano, A.O. Lobo, L.H.C. Mattoso, Mater. Sci. Eng. C. (2021). https://doi.org/10.1016/j.msec.2020.111853

    Article  Google Scholar 

  23. S. Mohandesnezhad, Y. Pilehvar-Soltanahmadi, E. Alizadeh, A. Goodarzi, S. Davaran, M. Khatamian, N. Zarghami, M. Samiei, M. Aghazadeh, A. Akbarzadeh, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.123152

    Article  Google Scholar 

  24. H. Bae, J. Lee, J. Ind. Eng. Chem. (2016). https://doi.org/10.1016/j.jiec.2016.06.014

    Article  Google Scholar 

  25. W. Zhu, F. Masood, J. O’Brien, L.G. Zhang, Nanomed. Nanotechnol. Biol. Med. (2015). https://doi.org/10.1016/j.nano.2014.12.001

    Article  Google Scholar 

  26. D. Braghirolli, F. Zamboni, G.A.X. Acasigua, P. Pranke, Int. J. Nanomed. (2015). https://doi.org/10.2147/IJN.S84312

    Article  Google Scholar 

  27. J. Ramier, T. Bouderlique, O. Stoilova, N. Manolova, I. Rashkov, V. Langlois, E. Renard, P. Albanese, D. Grande, Mater. Sci. Eng. C. (2014). https://doi.org/10.1016/j.msec.2014.01.046

    Article  Google Scholar 

  28. J.R.J. Palleta, F. Mack, H. Schenderlein, C. Theisen, J. Schmitt, J.H. Wendorff, S. Agarwal, S. Fuchs-Winkelmann, M.D. Schofer, Eur. Cell. Mater. (2011). https://doi.org/10.22203/ecm.v021a29

    Article  Google Scholar 

  29. D. Gupta, J. Venugopal, S. Mitra, V.R.G. Dev, S. Ramakrishna, Biomaterials (2009). https://doi.org/10.1016/j.biomaterials.2008.12.079

    Article  PubMed  PubMed Central  Google Scholar 

  30. N. Ribeiro, S.R. Sousa, C.A. van Blitterswijk, L. Moroni, F.J. Monteiro, Biofabrication (2014). https://doi.org/10.1088/1758-5082/6/3/035015

    Article  PubMed  Google Scholar 

  31. L. Siqueira, N. Ribeiro, M. Paredes, L. Grenho, C.C. Reis, E.S. Trichês, M.H. Fernandes, S. Sousa, F.J. Monteiro, Materials. (2019). https://doi.org/10.3390/ma12233879

    Article  PubMed  PubMed Central  Google Scholar 

  32. Q. Hu, X. Chen, N. Zhao, Y. Li, Mater. Lett. (2013). https://doi.org/10.1016/j.matlet.2013.04.075

    Article  Google Scholar 

  33. S. Bano, I. Ahmeda, D.M. Granta, A. Nommeots-Nommb, T. Hussain, Surf. Coat. Technol. (2019). https://doi.org/10.1016/j.surfcoat.2019.05.038

    Article  Google Scholar 

  34. D.C.R. Mello, L.M. Rodrigues, F.Z.D. Mello, T.F. Gonçalves, B. Ferreira, S.G. Schneider, L.D. Oliveira, L.M.R. Vasconcellos, Int J Implant Dent. (2020). https://doi.org/10.1186/s40729-020-00261-3

    Article  Google Scholar 

  35. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, J Biol Chem. (1951). https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  PubMed  Google Scholar 

  36. N. Pajares-Chamorro, X. Chatzistavrou, ACS Omega (2020). https://doi.org/10.1021/acsomega.0c00180

    Article  PubMed  PubMed Central  Google Scholar 

  37. J. Hao, M. Yuan, X. Deng, J. Appl. Polym. Sci. (2002). https://doi.org/10.1002/app.10955

    Article  Google Scholar 

  38. F. Serio, M. Miola, E. Verne, D. Pisignano, A.R. Boccaccini, L. Liverani, J. Nanomater. (2019). https://doi.org/10.3390/nano9020182

    Article  Google Scholar 

  39. R. Sergi, V. Cannillo, A.R. Boccaccini, L. Liverani, Materials. (2020). https://doi.org/10.3390/ma13245651

    Article  PubMed  PubMed Central  Google Scholar 

  40. I. Cerkez, A. Sezer, S.K. Bhullar, R. Soc. open sci. (2017). https://doi.org/10.1098/rsos.160911

    Article  PubMed  PubMed Central  Google Scholar 

  41. M. Hafezi, S. Safarian, M.T. Khorasani, N.A.A. Osman, RSC Adv. (2016). https://doi.org/10.1039/C5RA24786A

    Article  Google Scholar 

  42. K. Maji, S. Dasgupta, K. Pramanik, A. Bissoyi, Int J Biomater. (2016). https://doi.org/10.1155/2016/9825659

    Article  PubMed  PubMed Central  Google Scholar 

  43. E. Wrobel, J. Leszczynska, E. Brzoska, Cell. Mol. Biol. Lett. (2016). https://doi.org/10.1186/s11658-016-0027-8

    Article  PubMed  PubMed Central  Google Scholar 

  44. C.M.M. Nunes, C.L. Ferreira, D.V. Bernardo, C.C.R. Lopes, L. Collino, V.C.S. Lima, D.C.R. Mello, L.M.R. Vasconcellos, M.A.N. Jardini, Clin. Oral. Investig. (2021). https://doi.org/10.1007/s00784-020-03612-x

    Article  PubMed  Google Scholar 

  45. X. Chen, Y. Chen, Y. Hou, P. Song, M. Zhou, M. Nie, X. Liu, Int. J. Mol. Med. (2019). https://doi.org/10.3892/ijmm.2019.4172

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Brazilian agencies: Coordination for the Improvement of Higher Education Personnel—CAPES, Brazil (Grant CAPES/Print: 8888.572851/2020-00), National Council for Scientific and Technological Development—CNPq, Brazil (Grant PQ: 309406/2019-6), Sao Paulo Research Foundation—FAPESP (Grant: 2019/19594-4 and Grant: 2021/14277-0). The authors thank the use of the multi-user center (NAPCEM) at the Federal University of Sao Paulo (UNIFESP/SJC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eliandra de Sousa Trichês or Alexandre Luiz Souto Borges.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Siqueira, L., dos Santos, V.R., de Araújo, J.C.R. et al. Ultrathin Polymer Fibers Coated with an Amorphous SiO2–CaO–P2O5 Bioactive Powders for Biomedical Applications. Fibers Polym 24, 3139–3150 (2023). https://doi.org/10.1007/s12221-023-00287-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00287-5

Keywords

Navigation