Skip to main content
Log in

Effect of Curing Process on Tensile and Flexural Properties of 3D Woven Structural Polymer Composites

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The unstable meso-structure of preform affects the mechanical properties of 3D angle-interlock woven composites, which restricts the application in load-bearing component. To enhance the elastic properties of composites, the modified curing processes were proposed to improve the structural stability of preform. Two typical methods of the modified curing processes were described in this research, and three typical composite samples were manufactured. The influence of different curing processes on meso-structural characteristic and mechanical properties of composites was investigated. Then, the quasi-static tensile and three-point bending tests were carried out, and the load–deflection curves and stress–strain curves were obtained. The failure modes and damage mechanisms of three typical composite samples were analyzed. The results showed that the modified curing process improved the structural consistency of preform, and the straightness of load-bearing yarns increased. The elastic modulus of samples was increased by about 20% ~ 35% with the modified curing process, which effectively reduced the variation coefficient of the strength and modulus. The modified curing process reduced the crimp percentage of load-bearing yarns, which increased the bonding strength between fibers and epoxy. The load-bearing carbon fibers were completely used in composites, and the results could broaden the application of composites in structural components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Aridhi, M. Arfaoui, T. Mabrouki, N. Naouar, Y. Denis, M. Zarroug, P. Boisse, Compos. B Eng. 166, 773 (2019)

    Article  CAS  Google Scholar 

  2. R.K. Mishra, M. Petru, B.K. Behera, P.K. Behera, Polymers 14, 1134 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. E. Guzman-Maldonado, P. Wang, N. Hamila, P. Boisse, Compos. Struct. 208, 213 (2019)

    Article  Google Scholar 

  4. F. Ahmad, N. Yuvaraj, P.K. Bajpai, Polym. Compos. 41, 2518 (2020)

    Article  CAS  Google Scholar 

  5. Z. Ma, P. Zhang, J. Zhu, J. Ind. Text. 51, 1348S (2021)

    Article  Google Scholar 

  6. Y. Zhou, H. Cui, W. Wen, Fibers Polym. 23, 819 (2022)

    Article  Google Scholar 

  7. A.K. Dash, B.K. Behera, Fibers Polym. 20, 2146 (2019)

    Article  Google Scholar 

  8. B.K. Behera, B.P. Dash, Fibers Polym. 15, 1950 (2014)

    Article  CAS  Google Scholar 

  9. J. Lian, Z. Xu, X. Ruan, J. Zhejiang Univ. Sci. 20, 311 (2019)

    Article  Google Scholar 

  10. M. Kashif, S.T.A. Hamdani, Y. Nawab, M.A. Asghar, M. Umair, K. Shaker, J. Ind. Text. 48, 1206 (2018)

    Article  Google Scholar 

  11. S. Dai, P.R. Cunningham, S. Marshall, C. Silva, Compos. A Appl. Sci. Manuf. 69, 195 (2015)

    Article  CAS  Google Scholar 

  12. M. Umair, S.T.A. Hamdani, M.A. Asghar, T. Hussain, M. Karahan, Y. Nawab, M. Ali, J. Reinf. Plast. Compos. 37, 429 (2018)

    Article  CAS  Google Scholar 

  13. W. Jiao, L. Chen, J. Xie, Z. Yang, J. Fang, L. Chen, Compos. Struct. 252, 112756 (2020)

    Article  Google Scholar 

  14. J. Du, X. Zhao, H. Yang, C. Jia, H. Gao, D. Wang, Y. Lü, J. Wuhan Univ. Technol. Mater. Sci. Ed. 32, 791 (2017)

    Article  CAS  Google Scholar 

  15. Q. Guo, Y. Zhang, R. Guo, M. Ma, L. Chen, Mater. Today Commun. 23, 100886 (2020)

    Article  CAS  Google Scholar 

  16. Z. Ma, P. Zhang, J. Zhu, J. Ind. Text. 51, 1641 (2020)

    Article  Google Scholar 

  17. H. Gu, Z. Zhili, Mater. Des. 23, 671 (2002)

    Article  Google Scholar 

  18. E. Archer, S. Buchanan, A.T. McIlhagger, J.P. Quinn, J. Reinf. Plast. Compos. 29, 3162 (2010)

    Article  CAS  Google Scholar 

  19. F. Stig, S. Hallström, Adv. Mater. Sci. Eng. 2019, 1 (2019)

    Article  Google Scholar 

  20. A.K. Dash, B.K. Behera, J. Textile Inst. 109, 952 (2017)

    Article  Google Scholar 

  21. M. Li, P. Wang, F. Boussu, D. Soulat, Polymers (Basel) 12, 1045 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. S. Ozkur, H. Sezgin, I. Yalcin-Enis, Fibers Polym. 23, 1410 (2022)

    Article  CAS  Google Scholar 

  23. T. Chang, L. Zhan, W. Tan, S. Li, Fibers Polym. 18, 148 (2017)

    Article  CAS  Google Scholar 

  24. V.R. Tamakuwala, Mater. Today 44, 987 (2021)

    Article  CAS  Google Scholar 

  25. Y. Nawab, X. Legrand, V. Koncar, J. Text. Inst. 103, 1273 (2012)

    Article  Google Scholar 

  26. Y. Mahadik, K.A.R. Brown, S.R. Hallett, Compos. A Appl. Sci. Manuf. 41, 872 (2010)

    Article  Google Scholar 

  27. N. Vernet, F. Trochu, Compos. A Appl. Sci. Manuf. 80, 182 (2016)

    Article  CAS  Google Scholar 

  28. X. Zhao, J. Du, H. Yang, C. Jia, H. Gao, D. Wang, Y. Lü, J. Wuhan Univ. Technol. Mater. Sci. Ed. 31, 1240 (2016)

    Article  CAS  Google Scholar 

  29. H. Alhussein, R. Umer, S. Rao, E. Swery, S. Bickerton, W.J. Cantwell, J. Mater. Sci. 51, 3277 (2016)

    Article  CAS  Google Scholar 

  30. C. Kracke, A. Nonn, C. Koch, M. Nebe, E. Schmidt, S. Bickerton, T. Gries, P. Mitschang, Compos. A Appl. Sci. Manuf. 106, 70 (2018)

    Article  CAS  Google Scholar 

  31. R. Barbaz-Isfahani, H. Dadras, A. Taherzadeh-Fard, M.A. Zarezadeh-Mehrizi, S. Saber-Samandari, M. Salehi, G. Liaghat, Fibers Polym. 23, 2003 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruidong Man.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Man, R., Yin, D. et al. Effect of Curing Process on Tensile and Flexural Properties of 3D Woven Structural Polymer Composites. Fibers Polym 24, 2835–2848 (2023). https://doi.org/10.1007/s12221-023-00259-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00259-9

Keywords

Navigation