Skip to main content
Log in

Study on Temperature and Humidity Stability for Melt-blown Polylactide Electret Nonwovens

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

To investigate the temperature and humidity stability of melt-blown polylactide (PLA) electret nonwovens with different crystallinity, PLA nonwovens were annealed at 70 ℃ for different time followed by the corona charging process, and decay experiments were carried out under different temperature and humidity conditions. It was found that the crystallinity of the PLA nonwovens increased from 14.0 to 50.8%, with annealing time increased from 0 to 4 h. Initial surface potential and filtration efficiency of the PLA electret nonwovens increased with increasing crystallinity (from 14.0 to 50.8%), with the maximum increment of 18% in the initial surface potential. Moreover, the temperature and humidity stability of the PLA electret nonwovens was enhanced with increasing crystallinity. As for the temperature stability, when humidity was constant and temperature increased from 30 to 50 ℃, a slight drop in the retention rate of the filtration efficiency was observed (≤ 3%) for the PLA electret nonwovens. Regarding the humidity stability, when temperature was constant and humidity exceeded 50% RH, the retention rate of the filtration efficiency for the PLA electret nonwovens decreased significantly (≥ 6%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. L. Chang, X.L. Xing, Y.F. Zhou, C.F. Wu, H.X. Xu, L. Jiang, J.W. Ma, S.J. Chen, Fiber. Polym. 23, 882 (2022)

    Article  CAS  Google Scholar 

  2. N. Hoda, F. Mert, F. Kara, H.G. Atasagun, G.S. Bhat, Fiber. Polym. 22, 285 (2021)

    Article  CAS  Google Scholar 

  3. Y.F. Zhou, L. Jiang, H.Y. Jia, X.L. Xing, Z.H. Sun, S.J. Chen, J.W. Ma, S. Jerrams, Fiber. Polym. 20, 1200 (2019)

    Article  CAS  Google Scholar 

  4. X. Zhang, J.X. Liu, H.F. Zhang, J. Hou, Y.X. Wang, C. Deng, C. Huang, X.Y. Jin, Polymers 13, 485 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. H.F. Zhang, N. Liu, Q.R. Zeng, J.X. Liu, X. Zhang, M.Z. Ge, W. Zhang, S.Y. Li, Y.J. Fu, Y. Zhang, Polymers 12, 1 (2020)

    Google Scholar 

  6. X. Zhang, J.X. Liu, H.F. Zhang, Y.X. Wang, X.Y. Jin, J. Text. Res. 41, 168 (2020)

    Google Scholar 

  7. P.J. Brown, C.L. Cox, Book fibrous filter media, 1st edn. (Woodhead Publishing, New York, 2017), pp.97–99

    Google Scholar 

  8. W.C. Hinds, Book aerosol technology: properties, behavior, and measurement of airborne particles, 2nd edn. (Wiley, New York, 1999)

    Google Scholar 

  9. R.E. Drumright, P.R. Gruber, D.E. Henton, Adv. Mater. 12, 1841 (2000)

    Article  CAS  Google Scholar 

  10. J.A. Cicero, J.R. Dorgan, J. Polym. Environ. 9, 1 (2001)

    Article  CAS  Google Scholar 

  11. D.H. Müller, A. Krobjilowski, Int. Nonwov. J. 10, 11 (2001)

    Google Scholar 

  12. F.I.G. Chemical, Chem. Fibers Int. 59, 200 (2009)

    Google Scholar 

  13. R.L. Hammonds, W.H. Gazzola, R.S. Benson, J. Appl. Polym. Sci. 131, 40593 (2014)

    Article  Google Scholar 

  14. Y. Liu, B.W. Cheng, G.X. Cheng, Text. Res. J. 80, 771 (2009)

    Article  Google Scholar 

  15. Y. Ren, M. Li, X.Y. You, J. Text. Res. 36, 13 (2015)

    Google Scholar 

  16. B. Yu, J. Han, H. Sun, F.C. Zhu, Q. Zhang, J.J. Kong, Polym. Compos. 36, 264 (2015)

    Article  CAS  Google Scholar 

  17. F.C. Zhu, J.J. Su, Y.H. Zhao, M. Hussain, S. Yasin, B. Yu, J. Han, Text. Res. J. 89, 4173 (2019)

    Article  CAS  Google Scholar 

  18. F.C. Zhu, B. Yu, J.J. Su, J. Han, Autex. Res. J. 20, 24 (2020)

    Article  CAS  Google Scholar 

  19. B. Yu, H. Sun, Y.M. Cao, J. Han, J.J. Kong, P. Wang, F.C. Zhu, Polym-Plast. Technol. 53, 1788 (2014)

    Article  CAS  Google Scholar 

  20. M. Łatwińska, J. Sójka-Ledakowicz, J. Chruściel, M. Piórkowski, Int. J. Polym. Sci. 2016, 1 (2016)

    Article  Google Scholar 

  21. H.C. Huang, G.L. Song, G.Y. Tang, L.J. Chen, Y.Y. Hong, Acta. Mater. Compos. Sin. 36, 563 (2019)

    Google Scholar 

  22. C. Cai, G.Y. Tang, G.L. Song, L. Zhao, L.J. Chen, Acta. Mater. Compos. Sin. 34, 486 (2017)

    Google Scholar 

  23. J.F. Zhang, G.J. Chen, G.S. Bhat, H. Azari, H.L. Pen, J. Appl. Polym. Sci. 137, 48309 (2019)

    Article  Google Scholar 

  24. E.W. Fischer, H.J. Sterzel, G. Wegner, Polymere 251, 980 (1973)

    Article  CAS  Google Scholar 

  25. B. Kalb, A.J. Pennings, Polymer 21, 607 (1980)

    Article  CAS  Google Scholar 

  26. J.M. Zhang, Y.X. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, Y. Ozak, Macromolecules 38, 8012 (2005)

    Article  CAS  Google Scholar 

  27. P.J. Pan, B. Zhu, Y. Inoue, Macromolecules 40, 9664 (2007)

    Article  CAS  Google Scholar 

  28. C. Liu, Z.J. Dai, B. He, Q.F. Ke, Materials 13, 1 (2020)

    Google Scholar 

  29. A. Kilic, E. Shim, B. Pourdeyhimi, J Text Inst 108, 987 (2016)

    Article  Google Scholar 

  30. R. Nath, M.M. Perlman, IEEE. Trans. Electr. Insul. 24, 409 (1989)

    Article  CAS  Google Scholar 

  31. B. Tabti, L. Dascalescu, M. Plopeanu, A. Antoniu, M. Mekideche, J. Electrost. 6, 193 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Science and Technology Bureau of Longquan City of Zhejiang Province of China (2022KJCZ-008). We also acknowledge support from Guangzhou Shitian Material Technology Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, P., Luo, Y. et al. Study on Temperature and Humidity Stability for Melt-blown Polylactide Electret Nonwovens. Fibers Polym 24, 2665–2672 (2023). https://doi.org/10.1007/s12221-023-00252-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00252-2

Keywords

Navigation