Skip to main content
Log in

High-Bulking Behavior of Cotton/Acrylic Rotor Yarn Using Taguchi Statistical Procedure

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This research aims to investigate the coincident optimization of both properties of specific volume and tensile strength of high-bulked cotton/acrylic rotor yarn, using Taguchi statistical procedure. Therefore, the L27 orthogonal arrays were used to design production process factors of high-bulked yarns such as percentage of acrylic shrinkable fiber, navel type, rotor speed, yarn twist, and relaxation temperature. The used method offers techniques such as signal-to-noise (S/N) and overall evaluation criteria (OEC) which can be respectively employed for individual and coincident optimization of two studied characteristics. Considering the meaningful effects of the variance values for all factors, they have significant effects on the yarn specific volume. It was also deduced that except navel type and rotor speed, the influence of the other studied factors on the yarn tensile strength is significant. Moreover, in the coincident optimization, it was shown that the yarn twist has the most significant level on OEC values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data provided is not available as an appendix.

References

  1. S.M. Ishtiaque, B.K. Behera, Synth. Fiber. 2, 20 (1991)

    Google Scholar 

  2. V.B. Gupta, V.K. Kothari, Manufactured Fiber Technology (Chapman and Hall, London, 1997)

    Book  Google Scholar 

  3. B. Piller, Bulked Yarns (SNTL-Publishers of Technical Literature, Prague, 1973)

    Google Scholar 

  4. A. Das, V.K. Kothari, M. Balaji, J. Text. Inst. 98, 261 (2007)

    Article  Google Scholar 

  5. A. Das, V.K. Kothari, M. Balaji, J. Text. Inst. 98, 363 (2007)

    Article  CAS  Google Scholar 

  6. A. Das, R.D. Mal, J. Text. Inst. 100, 44 (2009)

    Article  CAS  Google Scholar 

  7. A. Das, S.S. Yadaw, J. Text. Inst. 104, 322 (2013)

    Article  CAS  Google Scholar 

  8. M. Sadeghi-Sadeghabad, M. Tavakoli, A. Alamdar-Yazdi, H. Mashroteh, J. Text. Inst. 106, 1328 (2015)

    Article  CAS  Google Scholar 

  9. P.R. Lord, Text. Res. J. 41, 778 (1971)

    Article  Google Scholar 

  10. E. Kaplan, E. Koc, Fibres Text. East. Eur. 2, 7 (2010)

    Google Scholar 

  11. J.S. Manohar, A.K. Rakshit, N. Balasubramanian, Text. Res. J. 53, 497 (1983)

    Article  Google Scholar 

  12. S. Palamutcu, H. Kadoğlu, Fibres Text. East. Eur. 16, 24 (2008)

    CAS  Google Scholar 

  13. J. Antony, Design of Experiments for Engineers and Scientists (Butterworth-Heinemann, Boston, MA, 2003)

    Google Scholar 

  14. N. Ahmad, S. Kamal, Z.A. Raza, S. Abid, M. Zeshan, Fiber. Polym. 20, 1039 (2020)

    Article  Google Scholar 

  15. M.S. Irfan, R. Umer, S. Rao, Fiber. Polym. 22, 1378 (2021)

    Article  CAS  Google Scholar 

  16. H.A.D. Ashtiani, R.E. Farsani, Fiber. Polym. 12, 1054 (2011)

    Article  CAS  Google Scholar 

  17. M.-L. Huang, Y.-H. Hung, W.-C. Kuo, Fiber. Polym. 16, 2670 (2015)

    Article  CAS  Google Scholar 

  18. J. Simpson, M.F. Murray, Text. Res. J. 48, 270 (1978)

    Article  Google Scholar 

  19. J.W.S. Hearle, P.R. Lord, N. Senturk, J. Text. Inst. 63, 605 (1972)

    Article  Google Scholar 

  20. C.F.J. Kuo, C.C. Huang, T.-L. Su, W.L. Lan, M.-Y. Lin, Fiber. Polym. 15, 2597 (2014)

    Article  CAS  Google Scholar 

  21. G.G. Pino, A.C. Kieling, A. Bezazi, H. Boumediri, J.F.R. Souza, F.V. Díaz, J.L.V. Rivera, J. Dehaini, T.H. Panzera, Fiber. Polym. 21, 399 (2020)

    Article  Google Scholar 

  22. D. Das, R. Thakur, Fiber. Polym. 2013, 482 (2013)

    Article  Google Scholar 

  23. Y. Erbil, O. Babaarslan, P.D. Baykal, Fibres Text. East. Eur. 16, 31 (2018)

    Google Scholar 

  24. R.T. Esfahani, M. Shanbeh, Fibres Text. East. Eur. 22, 61 (2014)

    Google Scholar 

  25. C.-I. Su, Y.-S. Liu, C.-H. Hsu, J.-Y. Lee, C.-H. Lu, Fiber. Polym. 16, 826 (2015)

    Article  Google Scholar 

  26. C.-F.J. Kuo, T.-L. Su, Fiber. Polym. 7, 404 (2006)

    Article  CAS  Google Scholar 

  27. D. Xing, X.Y. Xi, M.G. Qi, Q.B. Zheng, P.C. Ma, J. Text. Inst. 112, 515 (2021)

    Article  CAS  Google Scholar 

  28. C.-F.J. Kuo, C.-C. Fang, Fiber. Polym. 7, 344 (2006)

    Article  CAS  Google Scholar 

  29. M. Pourmehr, A.H. Navarchian, J. Appl. Polym. Sci. 111, 338 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Mashroteh.

Ethics declarations

Conflict of Interest

There is no potential conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahadi, M.M., Mashroteh, H., Owlia, E. et al. High-Bulking Behavior of Cotton/Acrylic Rotor Yarn Using Taguchi Statistical Procedure. Fibers Polym 24, 2529–2539 (2023). https://doi.org/10.1007/s12221-023-00242-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00242-4

Keywords

Navigation