Skip to main content
Log in

Effect of Urea Content on MCDI Performance of Waste-Corn-Stalk-Derived Cellulose Carbon Aerogel

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Carbon aerogel was prepared from waste corn stalk following a four-step process: (1) purification of cellulose, (2) gelation, (3) carbonization and (4) activation. Different amounts of urea as gelation agent were employed to investigate their effect on the characteristics of carbon aerogel as well as the electrochemical properties and desalination capability of carbon aerogel electrode. ACCA-1.5 sample (cellulose:urea ratio of 1:1.5) possessed the largest BET surface area of 713 m2 g−1 with 76.88% micropores, the highest specific capacitance of 67.2 F g−1, and the highest SAC value of 22.19 mg g−1 after 1415 s. These results propose an effective method to exploit the cheap and abundant waste biomass to fabricate MCDI electrodes in the desalination process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in this article.

References

  1. M. Qin, A. Deshmukh, R. Epsztein, S.K. Patel, O.M. Owoseni, W.S. Walker, M. Elimelech, Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination 455, 100–114 (2019). https://doi.org/10.1016/j.desal.2019.01.003

    Article  CAS  Google Scholar 

  2. M.S. Gaikwad, S.K. Suman, K. Shukla, A.V. Sonawane, S.N. Jain, A review on recent contributions in the progress of membrane capacitive deionization for desalination and wastewater treatment. Int. J. Environ. Sci. Technol. (2023). https://doi.org/10.1007/s13762-023-04778-z

    Article  Google Scholar 

  3. Q. Wu, D. Liang, S. Lu, H. Wang, Y. Xiang, D. Aurbach, E. Avraham, I. Cohen, Advances and perspectives in integrated membrane capacitive deionization for water desalination. Desalination (2022). https://doi.org/10.1016/j.desal.2022.116043

    Article  Google Scholar 

  4. G. Wang, T. Yan, J. Zhang, L. Shi, D. Zhang, Trace-fe-enhanced capacitive deionization of saline water by boosting electron transfer of electro-adsorption sites. Environ. Sci. Technol. 54, 8411–8419 (2020). https://doi.org/10.1021/acs.est.0c01518

    Article  CAS  PubMed  Google Scholar 

  5. S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005

    Article  CAS  Google Scholar 

  6. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8, 2296–2319 (2015). https://doi.org/10.1039/C5EE00519A

    Article  CAS  Google Scholar 

  7. S. Daer, J. Kharraz, A. Giwa, S.W. Hasan, Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367, 37–48 (2015). https://doi.org/10.1016/j.desal.2015.03.030

    Article  CAS  Google Scholar 

  8. A. Hemmatifar, J.W. Palko, M. Stadermann, J.G. Santiago, Energy breakdown in capacitive deionization. Water Res. 104, 303–311 (2016). https://doi.org/10.1016/j.watres.2016.08.020

    Article  CAS  PubMed  Google Scholar 

  9. G. Wang, T. Yan, J. Shen, J. Zhang, D. Zhang, Capacitive removal of fluoride ions via creating multiple capture sites in a modulatory heterostructure. Environ Sci Technol 55, 11979–11986 (2021). https://doi.org/10.1021/acs.est.1c03228

    Article  CAS  PubMed  Google Scholar 

  10. M. Mao, T. Yan, J. Shen, J. Zhang, D. Zhang, Selective capacitive removal of heavy metal ions from wastewater over lewis base sites of S-Doped Fe–N–C cathodes via an electro-adsorption process. Environ. Sci. Technol. 55, 7665–7673 (2021). https://doi.org/10.1021/acs.est.1c01483

    Article  CAS  PubMed  Google Scholar 

  11. M. Mao, T. Yan, J. Shen, J. Zhang, D. Zhang, Capacitive removal of heavy metal ions from wastewater via an electro-adsorption and electro-reaction coupling process. Environ. Sci. Technol. 55, 3333–3340 (2021). https://doi.org/10.1021/acs.est.0c07849

    Article  CAS  PubMed  Google Scholar 

  12. A. Thamilselvan, A.S. Nesaraj, M. Noel, Review on carbon-based electrode materials for application in capacitive deionization process. Int. J. Environ. Sci. Technol. 13, 2961–2976 (2016). https://doi.org/10.1007/s13762-016-1061-9

    Article  CAS  Google Scholar 

  13. Z.-H. Huang, Z. Yang, F. Kang, M. Inagaki, Carbon electrodes for capacitive deionization. J. Mater. Chem. A. 5, 470–496 (2017). https://doi.org/10.1039/C6TA06733F

    Article  CAS  Google Scholar 

  14. M.S. Gaikwad, C. Balomajumder, Capacitive deionization for desalination using nanostructured electrodes. Anal. Lett. 49, 1641–1655 (2016). https://doi.org/10.1080/00032719.2015.1118485

    Article  CAS  Google Scholar 

  15. T.J. Welgemoed, C.F. Schutte, Capacitive deionization technology™: an alternative desalination solution. Desalination 183, 327–340 (2005). https://doi.org/10.1016/j.desal.2005.02.054

    Article  CAS  Google Scholar 

  16. Z. Cao, C. Zhang, Z. Yang, Q. Qin, Z. Zhang, X. Wang, J. Shen, Preparation of carbon aerogel electrode for electrosorption of copper ions in aqueous solution. Materials (Basel) (2019). https://doi.org/10.3390/ma12111864

    Article  PubMed  PubMed Central  Google Scholar 

  17. X. Quan, Z. Fu, L. Yuan, M. Zhong, R. Mi, X. Yang, Y. Yi, C. Wang, Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes. RSC Adv. 7, 35875–35882 (2017). https://doi.org/10.1039/C7RA05226J

    Article  CAS  Google Scholar 

  18. H.-H. Jung, S.-W. Hwang, S.-H. Hyun, K.-H. Lee, G.-T. Kim, Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying. Desalination 216, 377–385 (2007). https://doi.org/10.1016/j.desal.2006.11.023

    Article  CAS  Google Scholar 

  19. P. Xu, J.E. Drewes, D. Heil, G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res. 42, 2605–2617 (2008). https://doi.org/10.1016/j.watres.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  20. R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989). https://doi.org/10.1007/BF01139044

    Article  CAS  Google Scholar 

  21. C. Zhang, X. Wang, H. Wang, X. Wu, J. Shen, A positive-negative alternate adsorption effect for capacitive deionization in nano-porous carbon aerogel electrodes to enhance desalination capacity. Desalination 458, 45–53 (2019). https://doi.org/10.1016/j.desal.2019.01.023

    Article  CAS  Google Scholar 

  22. L.H. Poudeh, I. Berktas, H.Q. Ali, B.S. Okan, M. Yıldız, Toward next-generation carbon-based materials derived from waste and biomass for high-performance energy applications. Energy Technol. (2020). https://doi.org/10.1002/ente.202000714

    Article  Google Scholar 

  23. L.K. Pandey, M.S. Gaikwad, P.K. Chaudhari, Biowaste materials derived activated carbon (BMDAC) electrodes for removal of pollutant ions using capacitive deionization: a mini review. Mater. Lett. (2023). https://doi.org/10.1016/j.matlet.2023.134165

    Article  Google Scholar 

  24. M.S. Gaikwad, C. Balomajumder, Removal of Cr(VI) and fluoride by membrane capacitive deionization with nanoporous and microporous Limonia acidissima (wood apple) shell activated carbon electrode. Sep. Purif. Technol. 195, 305–313 (2018). https://doi.org/10.1016/j.seppur.2017.12.006

    Article  CAS  Google Scholar 

  25. G. Gan, X. Li, S. Fan, L. Wang, M. Qin, Z. Yin, G. Chen, Carbon aerogels for environmental clean-up. Eur. J. Inorg. Chem. 2019, 3126–3141 (2019). https://doi.org/10.1002/ejic.201801512

    Article  CAS  Google Scholar 

  26. H. Maleki, N. Hüsing, Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects. Appl. Catal. B Environ. 221, 530–555 (2018). https://doi.org/10.1016/j.apcatb.2017.08.012

    Article  CAS  Google Scholar 

  27. X. Du, J. Qiu, S. Deng, Z. Du, X. Cheng, H. Wang, Alkylated nanofibrillated cellulose/carbon nanotubes aerogels supported form-stable phase change composites with improved n-alkanes loading capacity and thermal conductivity. ACS Appl. Mater. Interfaces 12, 5695–5703 (2020). https://doi.org/10.1021/acsami.9b17771

    Article  CAS  PubMed  Google Scholar 

  28. F. Jiang, S. Hu, Y.-L. Hsieh, Aqueous synthesis of compressible and thermally stable cellulose nanofibril-silica aerogel for CO2 adsorption. ACS Appl. Nano Mater. 1, 6701–6710 (2018). https://doi.org/10.1021/acsanm.8b01515

    Article  CAS  Google Scholar 

  29. X. Gong, Y. Wang, H. Zeng, M. Betti, L. Chen, Highly Porous, hydrophobic, and compressible cellulose nanocrystals/poly(vinyl alcohol) aerogels as recyclable absorbents for oil-water separation. ACS Sustain. Chem. Eng. 7, 11118–11128 (2019). https://doi.org/10.1021/acssuschemeng.9b00066

    Article  CAS  Google Scholar 

  30. H. Wang, W. Chen, X. Zhang, C. Liu, R. Sun, Esterification mechanism of bagasse modified with glutaric anhydride in 1-allyl-3-methylimidazolium chloride. Materials (Basel) (2017). https://doi.org/10.3390/ma10080966

    Article  PubMed  PubMed Central  Google Scholar 

  31. Y. Li, C. Guo, R. Shi, H. Zhang, L. Gong, L. Dai, Chitosan/nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb(II) ions from aqueous solution. Carbohydr. Polym. 223, 115048 (2019). https://doi.org/10.1016/j.carbpol.2019.115048

    Article  CAS  PubMed  Google Scholar 

  32. M. Kaya, Super absorbent, light, and highly flame retardant cellulose-based aerogel crosslinked with citric acid. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.45315

    Article  Google Scholar 

  33. A. Liu, L. Medina, L.A. Berglund, High-strength nanocomposite aerogels of ternary composition: poly(vinyl alcohol), clay, and cellulose nanofibrils. ACS Appl. Mater. Interfaces 9, 6453–6461 (2017). https://doi.org/10.1021/acsami.6b15561

    Article  CAS  PubMed  Google Scholar 

  34. J. Cai, S. Kimura, M. Wada, S. Kuga, L. Zhang, Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chemsuschem 1, 149–154 (2008). https://doi.org/10.1002/cssc.200700039

    Article  CAS  PubMed  Google Scholar 

  35. T.H. Nguyen, V.V. Nguyen, N.T. Nguyen, T. Nguyen, T.V.T. Nguyen, H.L. Ngo, L.T.N. Huynh, T.N. Tran, T.T.N. Ho, T.T. Nguyen, V.H. Le, Preparation, characterization and CDI application of KOH-activated porous waste-corn-stalk-based carbon aerogel. J. Porous Mater. (2022). https://doi.org/10.1007/s10934-022-01411-1

    Article  Google Scholar 

  36. J. Wang, Y. Zheng, A. Wang, Superhydrophobic kapok fiber oil-absorbent: preparation and high oil absorbency. Chem. Eng. J. 213, 1–7 (2012). https://doi.org/10.1016/j.cej.2012.09.116

    Article  CAS  Google Scholar 

  37. L.M. Anovitz, D.R. Cole, Characterization and analysis of porosity and pore structures. Rev. Mineral. Geochem. 80, 61–164 (2015). https://doi.org/10.2138/rmg.2015.80.04

    Article  Google Scholar 

  38. G. Shi, Y. Qian, F. Tan, W. Cai, Y. Li, Y. Cao, Controllable synthesis of pomelo peel-based aerogel and its application in adsorption of oil/organic pollutants. R. Soc. Open Sci. 6, 181823 (2019). https://doi.org/10.1098/rsos.181823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. B. Qi, J. Wang, Fill factor in organic solar cells. Phys. Chem. Chem. Phys. 15, 8972–8982 (2013). https://doi.org/10.1039/c3cp51383a

    Article  CAS  PubMed  Google Scholar 

  40. S. Rezania, M. Ponraj, M.F.M. Din, A.R. Songip, F.M. Sairan, S. Chelliapan, The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew. Sustain. Energy Rev. 41, 943–954 (2015). https://doi.org/10.1016/j.rser.2014.09.006

    Article  Google Scholar 

  41. W. Chen, H. He, H. Zhu, M. Cheng, Y. Li, S. Wang, Thermo-responsive cellulose-based material with switchable wettability for controllable oil/water separation. Polymers (Basel) (2018). https://doi.org/10.3390/polym10060592

    Article  PubMed  PubMed Central  Google Scholar 

  42. X.F. Sun, R.C. Sun, Y. Su, J.X. Sun, Comparative study of crude and purified cellulose from wheat straw. J. Agric. Food Chem. 52, 839–847 (2004). https://doi.org/10.1021/jf0349230

    Article  CAS  PubMed  Google Scholar 

  43. J.I. Morán, V.A. Alvarez, V.P. Cyras, A. Vázquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15, 149–159 (2007). https://doi.org/10.1007/s10570-007-9145-9

    Article  CAS  Google Scholar 

  44. L. Szcześniak, A. Rachocki, J. Tritt-Goc, Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15, 445–451 (2007). https://doi.org/10.1007/s10570-007-9192-2

    Article  CAS  Google Scholar 

  45. S.M.L. Rosa, N. Rehman, M.I.G. de Miranda, S.M.B. Nachtigall, C.I.D. Bica, Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym. 87, 1131–1138 (2012). https://doi.org/10.1016/j.carbpol.2011.08.084

    Article  CAS  Google Scholar 

  46. P. Willberg-Keyriläinen, J. Hiltunen, J. Ropponen, Production of cellulose carbamate using urea-based deep eutectic solvents. Cellulose 25, 195–204 (2017). https://doi.org/10.1007/s10570-017-1465-9

    Article  CAS  Google Scholar 

  47. B. Grzyb, C. Hildenbrand, S. Berthon-Fabry, D. Bégin, N. Job, A. Rigacci, P. Achard, Functionalisation and chemical characterisation of cellulose-derived carbon aerogels. Carbon 48, 2297–2307 (2010). https://doi.org/10.1016/j.carbon.2010.03.005

    Article  CAS  Google Scholar 

  48. J. Gong, J. Li, J. Xu, Z. Xiang, L. Mo, Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv. 7, 33486–33493 (2017). https://doi.org/10.1039/C7RA06222B

    Article  CAS  Google Scholar 

  49. M.A. Fauziyah, W. Widiyastuti, R. Balgis, H. Setyawan, Production of cellulose aerogels from coir fibers via an alkali–urea method for sorption applications. Cellulose 26, 9583–9598 (2019). https://doi.org/10.1007/s10570-019-02753-x

    Article  CAS  Google Scholar 

  50. S. Kuga, D.-Y. Kim, Y. Nishiyama, R.M. Brown, Nanofibrillar carbon from native cellulose. Mol. Cryst. Liq. Cryst. 387, 13–19 (2010). https://doi.org/10.1080/713738864

    Article  Google Scholar 

  51. E. Lei, W. Li, J. Sun, Z. Wu, S. Liu, N-doped carbon aerogels obtained from APMP fiber aerogels saturated with rhodamine dye and their application as supercapacitor electrodes. Appl. Sci. (2019). https://doi.org/10.3390/app9040618

    Article  PubMed  Google Scholar 

  52. V.C. Tran, N.Q. Pham, A.K. Le, A.K. Tran, C.M. Pham, Carbon aerogel from jackfruit waste as new material for electrodes capacitive deionization. Chem. Eng. Trans. 97, 181–186 (2022). https://doi.org/10.3303/CET2297031

    Article  Google Scholar 

  53. Y. Li, Y. Liu, M. Wang, X. Xu, T. Lu, C.Q. Sun, L. Pan, Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization. Carbon 130, 377–383 (2018). https://doi.org/10.1016/j.carbon.2018.01.035

    Article  CAS  Google Scholar 

  54. Y. Liu, X. Zhang, X. Gu, N. Wu, R. Zhang, Y. Shen, B. Zheng, J. Wu, W. Zhang, S. Li, F. Huo, One-step turning leather wastes into heteroatom doped carbon aerogel for performance enhanced capacitive deionization. Micropor. Mesopor. Mat. 303, 110303 (2020). https://doi.org/10.1016/j.micromeso.2020.110303

    Article  CAS  Google Scholar 

  55. J. Sun, J. Huang, E. Lei, C. Ma, Z. Wu, Z. Xu, S. Luo, W. Li, S. Liu, Wood-inspired compressible, mesoporous, and multifunctional carbon aerogel by a dual-activation strategy from cellulose. ACS Sustain. Chem. Eng. 8, 11114–11122 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by Ho Chi Minh City Department of Science and Technology (DOST) under Grant number of 42/2021/HĐ-QKHCN.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hoang Long Ngo or Thai Hoang Nguyen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.V.T., Nguyen, N.T., Nguyen, V.V. et al. Effect of Urea Content on MCDI Performance of Waste-Corn-Stalk-Derived Cellulose Carbon Aerogel. Fibers Polym 24, 1929–1939 (2023). https://doi.org/10.1007/s12221-023-00234-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00234-4

Keywords

Navigation