Skip to main content
Log in

Low-Temperature Flexible WPU-PDMS Copolymers for Cold-Resistant Coating Applications

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The demand for cold-resistant coatings that can be applied at low temperatures is rapidly growing, especially for polar cables requiring extreme cold resistance. These cables also need extreme cold resistance and organic solvent-free or water-dispersion coating resins that do not produce volatile organic compounds. In the current study, to address these issues, waterborne poly(dimethylsiloxane)-appended polyurethane (WPU-PDMS) resins were prepared. FTIR measurements confirmed the structures of the WPU-PDMS copolymers, and EDS mapping images established the presence of the siloxane group. DSC and TGA measurements showed that WPU-S10, with a PDMS-based polyol molar ratio of 10%, had a low glass transition temperature and high thermal stability. WPU-S10 also exhibited a high UV blocking rate and exceptional light resistance. Moreover, WPU-S10 displayed outstanding low-temperature characteristics, including a tensile strength of 1.31 kg/mm2, elongation of 190%, and a shape recovery rate of 90% at – 40 ℃. It is evident that the PDMS content contributed to the chain flexibility, significantly increasing low-temperature elongation. Finally, WPU-S10 revealed no deep cracks on the surface after cold bending, demonstrating excellent low-temperature characteristics and cold resistance. Exceptional low-temperature characteristics and cold resistance of WPU-PDMS provide an ideal coating solution for various applications in Arctic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used for the current study are available from the corresponding author upon reasonable request.

References

  1. F.M.B. Coutinho, M.C. Delpech, Polym. Testing 15, 103 (1996)

    Article  CAS  Google Scholar 

  2. M.C. Delpech, F.M.B. Coutinho, Polym. Testing 19, 939 (2000)

    Article  CAS  Google Scholar 

  3. C.H. Shao, J.J. Huang, G.N. Chem, J.T. Yeh, K.N. Chen, Polym. Degrad. Stab. 65, 359 (1999)

    Article  CAS  Google Scholar 

  4. F.M.B. Coutinho, M.C. Delpech, Polym. Degrad. Stab. 70, 49 (2000)

    Article  CAS  Google Scholar 

  5. G.N. Chen, K.N. Chen, J. Appl. Polym. Sci. 63, 1609 (1997)

    Article  CAS  Google Scholar 

  6. D. Diterich, W. Keberie, H. Witt, Angew. Chem. Int. Ed. 19, 40 (1970)

    Article  Google Scholar 

  7. B.G. Crowther, Rapra Rev. Rep. 8, 6 (1996)

    Google Scholar 

  8. K.C. Frisch, H.X. Xiao, R.W. Czerwinski, Adhes. Age. 3, 41 (1988)

    Google Scholar 

  9. E.J. Kim, I.K. Paik, J.H. Park, Text. Sci. Eng. 54, 28 (2017)

    Article  CAS  Google Scholar 

  10. C.S. Yoo, J.H. Chun, Polym. Sci. Tech. 10, 578 (1999)

    CAS  Google Scholar 

  11. C. Hepburn, Polyurethane Elastomer (Elsevier, London, 1982), pp.122–173

    Google Scholar 

  12. D. Dieterich, Prog. Org. Coat. 9, 281 (1981)

    Article  CAS  Google Scholar 

  13. S.L. Cooper, A.V. Tobosky, J. Appl. Polym. Sci. 10, 1837 (1966)

    Article  CAS  Google Scholar 

  14. S. Mohanty, N. Krishnamurti, J. Appl. Polym. Sci. 62, 1993 (1996)

    Article  CAS  Google Scholar 

  15. D.H. Shao, J.J. Huang, G.N. Chen, J.T. Yeh, K.N. Chen, Polym. Degrad. Stab. 65, 359 (1999)

    Article  CAS  Google Scholar 

  16. H.G. Yoronkvov, V.P. Mileshkevich, Y.A. Yuzhelevskii, The Siloxane Bond (Consultants Bureau, New York, 1978), pp.90–152

    Google Scholar 

  17. C. Eaborn, Organosilicon compounds (Butterworths, London, 1960), pp.1–25

    Google Scholar 

  18. W. Noll, Chemistry and technology of silicones (Academic Press, New York, 1968), pp.437–638

    Google Scholar 

  19. M.S. Yen, P.Y. Tsai, P.D. Hong, Colloids Surf. A: Physicochem. Eng. Aspects 279, 1 (2006)

    Article  CAS  Google Scholar 

  20. L.F. Wanga, Q. Jib, T.E. Glassb, T.C. Wardb, J.E. Mcgrathb, M. Mugglic, G. Burnsd, U. Sorathia, Polymer 41, 5083 (2000)

    Article  Google Scholar 

  21. I. Yilgor, G.L. Wilkes, J.E. Mcgrath, Polym. Prep. 24, 80 (1983)

    CAS  Google Scholar 

  22. I. Yilgor, J.R. Shaaban, W.P. Steckle, D. Tyagi, G.L. Wilkes, J.E. Mcgrath, Polymer 25, 1800 (1984)

    Article  CAS  Google Scholar 

  23. D. Tyagi, I. Yilgor, J.E. Mcgrath, G.L. Wilkes, Polymer 25, 1807 (1984)

    Article  CAS  Google Scholar 

  24. M. Shibayama, M. Inoru, T. Yamamoto, S. Nomura, Polymer 31, 749 (1990)

    Article  CAS  Google Scholar 

  25. T. Ho, K.J. Wynne, R.A. Nissan, Macromolecules 26, 7029 (1993)

    Article  CAS  Google Scholar 

  26. I. Yilgor, J.E. Mcgrath, Adv. Polym. Sci. 86, 1 (1988)

    Article  CAS  Google Scholar 

  27. J. H. Lee, J. W. Bae, M. C. Choi, Y. M. Yun, N. J. Jo, Elastomers and Composites, 56, 209 (2021)

  28. P. Farrow, F. Merli, Seal. Technol. 2009, 6 (2009)

    Google Scholar 

  29. G. Gee, Polymers 7, 177 (1966)

    Article  CAS  Google Scholar 

  30. Y.C. Chung, W.S. Kim, T.K. Cho, B.C. Chun, Fibers and Polymers 9, 388 (2008)

    Article  CAS  Google Scholar 

  31. Y.H. Lee, E.J. Kim, H.D. Kim, J. Appl. Polym. Sci. 120, 212 (2011)

    Article  CAS  Google Scholar 

  32. T. Kiyotsukuri, T. Masuda, N. Tsutsumi, W.S.M. Nagata, Polymer 36, 2629 (1995)

    Article  CAS  Google Scholar 

  33. T. Kiyotsukuri, T. Masuda, N. Tsutsumi, Polymer 35, 1274 (1994)

    Article  CAS  Google Scholar 

  34. S.W. Han, H.J. Kang, Polymer 42, 35 (2018)

    CAS  Google Scholar 

  35. S. Ioan, G. Grigorescu, A. Stanciu, Polymer 42, 3633 (2001)

    Article  CAS  Google Scholar 

  36. S. Ioan, G. Grigorescu, A. Stanciu, European. Polym. J. 38, 2295 (2002)

    CAS  Google Scholar 

  37. J.P. Sheth, A. Aneja, G.L. Wilkes, E. Yilgor, G.E. Atilla, Y. Iskender, F.L. Beyer, Polymer 45, 6919 (2004)

    Article  CAS  Google Scholar 

  38. G. Li, P. Lee-Sullivan, R. W. Thring, J. Therm. Anal. Calorim. 60, 377 (2000).

  39. C. Z. Yang, C. Li, S. L. Cooper, J. Polym. Sci., Part B: Polym. Phys. 29, 75 (1991).

  40. D. Tyagi, J.E. Yilgor, J.E. Macgrath, G.L. Wilkes, Polymer 25, 1807 (1984)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (20013166, Thermoplastic elastomer for Arctic shipboard cable) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong S. Park.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.J., Paik, I.K., Park, J.H. et al. Low-Temperature Flexible WPU-PDMS Copolymers for Cold-Resistant Coating Applications. Fibers Polym 24, 1919–1928 (2023). https://doi.org/10.1007/s12221-023-00227-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00227-3

Keywords

Navigation