Skip to main content
Log in

Wearable Cellulosic Textile Electrodes with High Washability Based on Silver Nanowires to Capture Electrocardiogram

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The rapid development of wearable electronic raises the requirement of textile electrodes for biosignal acquisition. However, a big concern is the washability of the e-textiles during practical use, especially for the electrocardiogram (ECG) textile electrodes with metal coating on the fabrics. In this study, a conductive cellulosic fabric with high washability was fabricated by simple drop-coating methods. The cellulosic fabric was drop coated with the mixture of silver nanowires (AgNWs) and polyvinyl alcohol (PVA), and further cross-linked with glutaraldehyde (GA) to form a network to hold AgNWs onto the fabric to prevent AgNWs from falling off in washing. Due to the large amount of hydroxyl groups in the cellulose, it is feasible for GA to cross-link cellulose and PVA by reacting between aldehyde groups and hydroxyl groups. The conductive cellulosic fabric with three drop-coating cycles (3-AgNW/CF) showed excellent conductivity and good stability. The electrical resistance of 3-AgNW/CF increased from 0.43 to 7.63 Ω sq−1 after 100 washing hours. The conductive cellulosic fabric was applied in the smart garment as textile electrodes to acquire ECG signals, which could remain basically consistent after 80 washing hours and slightly deformed after 100 washing hours. The antibacterial efficiency of the conductive cellulosic fabric was 99.9% mainly owing to impalement of AgNWs into bacteria. Together with the facile fabrication protocol, the cellulosic textile electrodes with superb washability show great potential of consumer-level applications in ECG wearable electronics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data are available from the corresponding authors upon reasonable request.

References

  1. I.B. Lee, in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, Canada, 2008), pp. 1300–1303

  2. S. Chernousova, M. Epple, Angew. Chem. Int. Edit. 52, 1636 (2013)

    Article  CAS  Google Scholar 

  3. H.M. Qin, J.R. Li, B.H. He, J.B. Sun, L.R. Li, L.Y. Qian, Materials 11, 370 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  4. A. Gurarslan, B. Ozdemir, I.H. Bayat, M.B. Yelten, G.K. Kurt, J. Eng. Fiber Fabr. 14, 1 (2019)

    Google Scholar 

  5. S. Bhattacharjee, C.R. Macintyre, P. Bahl, U. Kumar, X.Y. Wen, K.F. Aguey-Zinsou, A.A. Chughtai, R. Joshi, Adv. Mater. Interfaces 7, 2000814 (2020)

    Article  CAS  Google Scholar 

  6. Y. Lee, S. Bae, B. Hwang, M. Schroeder, Y. Lee, S. Baik, J. Mater. Chem. C 7, 12297 (2019)

    Article  CAS  Google Scholar 

  7. S.Q. Zhao, P.X. Zheng, Q. Liu, L. Niu, H.L. Cong, A.L. Wan, Mater. Des. 206, 109780 (2021)

    Article  CAS  Google Scholar 

  8. D.R. Cai, J. Zhou, P.P. Duan, G.Y. Luo, Y.Y. Zhang, F.Y. Fu, X.D. Liu, Cellulose 25, 7355 (2018)

    Article  CAS  Google Scholar 

  9. Z.P. Guo, Y.L. Wang, J.J. Huang, S.Y. Zhang, R.Q. Zhang, D.Z. Ye, G.M. Cai, H.J. Yang, S.J. Gu, W.L. Xu, Cellulose 28, 7483 (2021)

    Article  CAS  Google Scholar 

  10. R. Pandimurugan, S. Thambidurai, Int. J. Biol. Macromol. 105, 788 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. A.L. Mohamed, A.G. Hassabo, Int. J. Biol. Macromol. 170, 479 (2021)

    Article  CAS  PubMed  Google Scholar 

  12. D.G. Gao, X.J. Li, Y.J. Li, B. Lyu, J.J. Ren, J.Z. Ma, Cellulose 28, 1221 (2021)

    Article  CAS  Google Scholar 

  13. A. Granados, R. Pleixats, A. Vallribera, Molecules 26, 3008 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L. Wang, D.D. He, J.R. Li, B.H. He, L.Y. Qian, Cellulose 28, 5881 (2021)

    Article  CAS  Google Scholar 

  15. B. Niu, S. Yang, T. Hua, X. Tian, M. Koo, Nano Res. 14, 1043 (2021)

    Article  CAS  Google Scholar 

  16. Y. Mao, W. Wang, D. Yu, J. Appl. Polym. Sci. 135, 46766 (2018)

    Article  Google Scholar 

  17. B. Hwang, A. Lund, Y. Tian, S. Darabi, C. Muller, A.C.S. Appl, Mater. Interfaces 12, 27537 (2020)

    Article  CAS  Google Scholar 

  18. Y. Zhang, W.X. Tian, L.X. Liu, W.H. Cheng, W. Wang, K.M. Liew, B.B. Wang, Y. Hu, Chem. Eng. J. 372, 1077 (2019)

    Article  CAS  Google Scholar 

  19. M.R. Nateghi, M. Shateri-Khalilabad, Carbohydr. Polym. 117, 160 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. X.W. Xu, Z.F. Liu, P. He, J.L. Yang, J. Phys. D-Appl. Phys. 52, 455401 (2019)

    Article  CAS  Google Scholar 

  21. S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H.J. Cho, H. Algadi, S. Al-Sayari, D.E. Kim, T. Lee, Adv. Funct. Mater. 25, 3114 (2015)

    Article  CAS  Google Scholar 

  22. C.X. Wu, T.W. Kim, F.S. Li, T.L. Guo, ACS Nano 10, 6449 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. C.X. Wu, T.W. Kim, T.L. Guo, F.S. Li, Nano Energy 32, 367 (2017)

    Article  CAS  Google Scholar 

  24. D.G. Gao, J.M. Zhu, M.Y. Ye, Y. Li, J.Z. Ma, J.J. Liu, J. Ind. Text., 2021 1528083720982005 (2021)

  25. T. Kim, C. Park, E.P. Samuel, S. An, A. Aldalbahi, F. Alotaibi, A.L. Yarin, S.S. Yoon, A.C.S. Appl, Mater. Interfaces 13, 10013 (2021)

    Article  CAS  Google Scholar 

  26. B. Wiley, Y.G. Sun, B. Mayers, Y.N. Xia, Chem. Eur. J. 11, 454 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. T. Hou, K. Guo, Z. Wang, X.-F. Zhang, Y. Feng, M. He, J. Yao, Cellulose 26, 5065 (2019)

    Article  CAS  Google Scholar 

  28. S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Biotechnol. Biofuels 3, 10 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  29. F.B. Lin, W. Li, X.D. Du, N.L. Chen, Y.B. Wu, Y.S. Tang, J.H. Jiang, Appl. Surf. Sci. 493, 1 (2019)

    Article  CAS  Google Scholar 

  30. D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, J.P. Simonato, Nanotechnology 24, 452001 (2013)

    Article  PubMed  Google Scholar 

  31. P. Giesz, E. Mackiewicz, A. Nejman, G. Celichowski, M. Cieslak, Cellulose 24, 409 (2017)

    Article  CAS  Google Scholar 

  32. L.L. Li, B.J. Sun, W.Y. Li, L. Jiang, Y.F. Zhou, J.W. Ma, S.J. Chen, X. Ning, F.L. Zhou, Macromol. Mater. Eng. 306, 2100365 (2021)

    Article  CAS  Google Scholar 

  33. H. Yang, S.T.S. Bukkapatnam, R. Komanduri, Biomed. Eng. Online 11, 16 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  34. H. Yang, S.T.S. Bukkapatnam, T. Le, R. Komanduri, Med. Eng. Phys. 34, 485 (2012)

    Article  PubMed  Google Scholar 

  35. G. Serra, A. Baranchuk, A. Bayes-De-Luna, J. Brugada, D. Goldwasser, L. Capulzini, D. Arazo, A. Boraita, M.E. Heras, J. Garcia-Niebla, R. Elosua, R. Brugada, P. Brugada, Europace 16, 1639 (2014)

    Article  PubMed  Google Scholar 

  36. G. Gosheger, J. Hardes, H. Ahrens, A. Streitburger, H. Buerger, M. Erren, A. Gunsel, F.H. Kemper, W. Winkelmann, C. von Eiff, Biomaterials 25, 5547 (2004)

    Article  CAS  PubMed  Google Scholar 

  37. M.J. Brady, C.M. Lisay, A.V. Yurkovetskiy, S.P. Sawan, Am. J. Infect. Control 31, 208 (2003)

    Article  PubMed  Google Scholar 

  38. A.K. Ojha, S. Forster, S. Kumar, S. Vats, S. Negi, I. Fischer, J. Nanobiotechnol. 11, 42 (2013)

    Article  Google Scholar 

  39. E.K. Sohn, S.A. Johari, T.G. Kim, J.K. Kim, E. Kim, J.H. Lee, Y.S. Chung, I.J. Yu, Biomed Res. Int. 2015, 893049 (2015)

    PubMed  PubMed Central  Google Scholar 

  40. M.I. Hossain, J. Edwards, J. Tyler, J. Anderson, S. Bandyopadhyay, IET Nanobiotechnol. 11, 501 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province, China (2018A0303130100); the Opening Foundation of State Key Laboratory of Advanced Materials and Electronic Components (FHR-JS-201909006). Also, A Mu (Shenzhen) New Technology Co., Ltd. (Shenzhen, China) is appreciated for help in ECG acquisitions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liying Qian or Junrong Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (MP4 3518 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Qin, H., Qian, L. et al. Wearable Cellulosic Textile Electrodes with High Washability Based on Silver Nanowires to Capture Electrocardiogram. Fibers Polym 24, 1963–1973 (2023). https://doi.org/10.1007/s12221-023-00188-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00188-7

Keywords

Navigation