Skip to main content
Log in

Different Dyeing Properties in Nonaqueous Dyeing Systems for Various Wool Fibers

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A large amount of wool with different characteristics is produced worldwide. The differences in wool structure due to the different habitats of sheep and goats and the corresponding environmental conditions have an impact on the dyeing properties of wool. In this paper, the mechanism of the shielding effects of wool fiber, which mainly originate from the cuticles and oil content (including the F-layer and lipoids in the wool) according to the significantly improved exhaustion and fixation rate of pretreated wool fiber, on dye during the dyeing process was studied. The surface morphology, integrity of the F-layer, oil content, and swelling of wool fiber were analyzed in this dyeing system, where decamethylcyclopentasiloxane was reported as a dyeing medium in the exhaustion wool dyeing method for the first time. For the investigated dye, the cuticles exhibited a severe shielding effect on the dyeing process, and the internal lipid substance exhibited the second-highest effect. All these results demonstrate that it is possible to apply this dyeing system to dye wool without cuticles and wool with a damaged cuticle surface. The analysis of the internal access effects in nonaqueous wool dyeing is of great significance for the rationalization of dyeing wool with cuticles in future commercial dyeing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data are available from the corresponding authors upon reasonable request.

References

  1. J. Liu, P. Zhu, C. Zhao, S. Sui, Z. Dong, L. Zhang, Fibers Polym. 15, 1601 (2014)

    Article  CAS  Google Scholar 

  2. M.Á. Pérez-Cabal, J.P. Gutiérrez, I. Cervantes, M.J. Alcalde, J. Anim. Breed. Genet. 518, 93 (2012)

    Google Scholar 

  3. X. Lv, L. Chen, S. He, C. Liu, B. Han, Z. Liu, M. Yusupu, H. Blair, P. Kenyon, S. Morris, W. Li, M. Liu, Annimals 10(6), 1058 (2020)

    Article  Google Scholar 

  4. J. Lindberg, B. Philip, N. Gralen, Nature 162, 458 (1948)

    Article  CAS  PubMed  Google Scholar 

  5. M. Huson, D. Evans, J. Church, S. Hutchinson, J. Maxwell, G. Corino, J. Struct. Biol. 163, 127 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. Y. Li, Text. Prog. 31(1–2), 1 (2001)

    Article  Google Scholar 

  7. C. Canal, R. Molina, E. Bertran, P. Erra, J. Adhes. Sci. Technol. 18, 1077 (2004)

    Article  CAS  Google Scholar 

  8. C. Canal, P. Erra, R. Molina, E. Bertran, Text. Res. J. 77, 559 (2007)

    Article  CAS  Google Scholar 

  9. N. Zhang, P.H. Huang, P. Wang, Y.Y. Yu, M. Zhou, Q. Wang, Fibers Polym. 23, 985 (2022)

    Article  Google Scholar 

  10. F.R. Oliveira, M. Fernandes, N. Carneiro, A.P. Souto, J. Appl. Polym. Sci. 128, 2638 (2013)

    Article  CAS  Google Scholar 

  11. L. Coderch, O. Lopez, A.D.L. Maza, A.M. Manich, J.L. Parra, J. Cegarra, Text. Res. J. 67, 131 (1997)

    Article  CAS  Google Scholar 

  12. Z. Jiang, Y. Zhang, N. Zhang, Q. Wang, P. Wang, Y. Yu, M. Zhou, Color. Technol. 138, 82 (2022)

    Article  CAS  Google Scholar 

  13. K. Sakata, M. Imajo, Sen’i Gakkaishi 66, 74 (2010)

    Article  CAS  Google Scholar 

  14. Z. Mengxing, J. Gao, F. Wang, L. Wang, H. Xue, Wool Text. J. 44, 32 (2016)

    Google Scholar 

  15. C.-K. Xu, H. Cheng, Z.-J. Liao, Pol. J. Environ. Stud. 27, 2325 (2018)

    Article  Google Scholar 

  16. H. Zheng, Y. Xu, J. Zhang, X. Xiong, J. Yan, L. Zheng, J. Cleaner Prod. 143, 269 (2017)

    Article  CAS  Google Scholar 

  17. L. Chen, B. Wang, J. Chen, X. Ruan, Y. Yang, Text. Res. J. 86, 533 (2016)

    Article  CAS  Google Scholar 

  18. H. Zhang, C. Xu, J. Xin, M. Wu, Y. Zhang, Wool Text. J. 46, 20 (2018)

    Google Scholar 

  19. W. Cao, L. Pei, H. Zhang, J. Wang, Environ. Chem. Lett. 19, 737 (2021)

    Article  CAS  Google Scholar 

  20. J. Wang, Y. Gao, L. Zhu, X. Gu, H. Dou, L. Pei, Polymers (Basel) 10, 1030 (2018)

    Article  PubMed  Google Scholar 

  21. W. Cheng, L. Pei, M.A. Saleem, L. Zhu, J. Wang, J. Cleaner Prod. 321, 128953 (2021)

    Article  CAS  Google Scholar 

  22. H. Miao, C. Fu, Y. Li, R. Tao, J. Liu, Silk Sci. 38, 105 (2012)

    Google Scholar 

  23. Md.Y. Hossain, Y. Liang, Md.N. Pervez, X. Ye, X. Dong, M.M. Hassan, Y. Cai, Cellulose 28, 517 (2021)

    Article  CAS  Google Scholar 

  24. W. Li, N. Zhang, Q. Wang, P. Wang, Y. Yu, M. Zhou, Fibers Polym. 22, 3045 (2021)

    Article  CAS  Google Scholar 

  25. M.M. Hassa, M. Bhagvandas, A.C.S. Sustain, Chem. Eng. 5, 973 (2017)

    Google Scholar 

  26. Y. Luo, S. Zhai, L. Pei, J. Wang, Z. Cai, A.C.S. Sustain, Chem. Eng. 10, 3557 (2022)

    CAS  Google Scholar 

  27. S.D. Bringans, J.E. Plowman, J.M. Dyer, S. Clerens, J.A. Vernon, W.G. Bryson, Exp. Dermatol. 16, 951 (2010)

    Article  Google Scholar 

  28. A.P. Fellows, M.T.L. Casford, P.B. Davies, Appl. Spectrosc. 74, 1540 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. V. Totolin, M. Sarmadi, S.O. Manolache, F.S. Denes, J. Appl. Polym. Sci. 117, 281 (2010)

    CAS  Google Scholar 

  30. J. Gu, X. Chen, W. Zhu, J. D. Univ. 37, 317 (2011)

    CAS  Google Scholar 

  31. J. Liu, R.Y. Zhu, Y. Zhang, Wool Text. J. 41(5), 51 (2013)

    Google Scholar 

  32. M. van der Kraan, M.V.F. Cid, G.F. Woerlee, W.J.T. Veugelers, G.J. Witkamp, J. Supercrit. Fluids 40, 470 (2007)

    Article  Google Scholar 

  33. M. Mori, M. Matsudaira, N. Inagaki, J. Text. Eng. 52, 19 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2022062), the National Natural Science Foundation of China (22176031), the National Natural Science Foundation of China (22072089), Key Research and Development Program of Xinjiang Production and Construction Corps (2019AA001), Shanghai Sailing Program (21YF1416000), and Opening Project of Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province (QJRZ1901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiping Wang or Zaisheng Cai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Wang, J. & Cai, Z. Different Dyeing Properties in Nonaqueous Dyeing Systems for Various Wool Fibers. Fibers Polym 24, 2017–2025 (2023). https://doi.org/10.1007/s12221-023-00185-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00185-w

Keywords

Navigation