Skip to main content
Log in

3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Silk Fibroin (SF) is a protein polymer with great biocompatibility, which can promote cell proliferation and differentiation, and enhance bone repair. In this paper, the effects of distinctive concentrations of SF solutions on the physicochemical and biological properties of the SF-HA-SA scaffolds were investigated. The SF-HA-SA porous scaffolds were prepared utilizing the pneumatic extrusion 3D printing technique, composed of hydroxyapatite (HA) and different concentrations of SF solution, and sodium alginate (SA) as a binder. The results shown the SF-HA-SA scaffolds can promote cell proliferation with the increase of SF concentration in scaffolds, and the strength meets the necessities of trabecular bone defects of bone and cartilage repair. It provides an important reference for the application of SF in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. E.H. Backes, E.M. Fernandes, G.S. Diogo, C.F. Marques, T.H. Silva, L.C. Costa, F.R. Passador, R.L. Reis, L.A. Pessan, Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. Mater. Sci. Eng. C. 122, 111928 (2021). https://doi.org/10.1016/j.msec.2021.111928

    Article  CAS  Google Scholar 

  2. P.K. Byram, L. Das, S. Dhara, N. Chakravorty, Natural polymeric hydrogels in chondral/osteochondral tissue engineering. Encycl. Mater. Plast. Polym. 4, 758–776 (2022)

    Google Scholar 

  3. M.L. Chinta, A. Velidandi, N.P.P. Pabbathi, S. Dahariya, S.R. Parcha, Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: a review. Int. J. Biol. Macromol. 175, 495–515 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. F. Coelho, M. Cavicchioli, S.S. Specian, E.M. Cilli, S.J.L. Ribeiro, R.M. Scarel-Caminaga, T.S. de Oliveira Capote, Silk fibroin/hydroxyapatite composite membranes: production, characterization and toxicity evaluation. Toxicol. Vitro 62, 104670 (2020)

    Article  Google Scholar 

  5. J.M. Cordell, M.L. Vogl, A.J. WagonerJohnson, The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds. J. Mech. Behav. Biomed. Mater. 2, 560–570 (2009)

    Article  PubMed  Google Scholar 

  6. Q. Fang, D. Chen, Z. Yang, M. Li, In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds. Mater. Sci. Eng. C-Biomimet. Supramol. Syst. 29, 1527–1534 (2009)

    Article  CAS  Google Scholar 

  7. F. Qiang, M.N. Rahaman, F. Hailuo, X. Liu, Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J. Biomed. Mater. Res. Part A 95(1), 164–171 (2010)

    Google Scholar 

  8. R.C. Gonçalves, A. Banfi, M.B. Oliveira, J.F. Mano, Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 269, 120628 (2021)

    Article  PubMed  Google Scholar 

  9. M. González-Durruthy, M. Ramón Rial, N.D.S. Cordeiro, Z. Liu, J.M. Ruso, Exploring the conformational binding mechanism of fibrinogen induced by interactions with penicillin β-lactam antibiotic drugs. J. Mol. Liq. 324, 114667 (2021)

    Article  Google Scholar 

  10. X. Jiang, J. Zhao, S. Wang, X. Sun, X. Zhang, J. Chen, D.L. Kaplan, Z. Zhang, Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials 30(27), 4522–4532 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Q.M. Jin, H. Takita, T. Kohgo, K. Atsumi, H. Itoh, Y. Kuboki, Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. J Biomed Mater Res 51, 491–499 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Kuboki, Q. Jin, M. Kikuchi, J. Mamood, H. Takita, Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis. Connect Tissue Res. 43(2–3), 529–534 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Kuboki, Q.M. Jin, H. Takita, Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J. Bone Joint Surg. Am. 83, S105–S115 (2001)

    Article  PubMed  Google Scholar 

  14. D.H. Lee, N. Tripathy, J.H. Shin, J.E. Song, J.G. Cha, K.D. Min, C.H. Park, G. Khang, Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Int. J. Biol. Macromol. 95, 14–23 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. P. Liu, M. Li, Y. Hongping, H. Fang, J. Yin, D. Zhu, Q. Yang, Q. Ke, Y. Huang, Y. Guo, Y. Gao, C. Zhang, Biphasic CK21-coated β-glycerophosphate chitosan/LL37-modified layered double hydroxide chitosan composite scaffolds enhance coordinated hyaline cartilage and subchondral bone regeneration. Chem. Eng. J. 418, 129531 (2021)

    Article  CAS  Google Scholar 

  16. X. Liu, W. Yuxuan, X. Zhao, Z. Wang, Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: a review. Carbohyd. Polym. 267, 118179 (2021)

    Article  CAS  Google Scholar 

  17. N. Raja, S.H. Han, M. Cho, Y.J. Choi, Y.Z. Jin, H. Park, J.H. Lee, H. Yun, Effect of porosity and phase composition in 3D printed calcium phosphate scaffolds on bone tissue regeneration in vivo. Mater. Design 219, 110819 (2022)

    Article  CAS  Google Scholar 

  18. D. Wang, Y. Xueke, X. Yiyang, X. Wang, H. Wang, Y. Zhang, Q. Li, L.S. Turng, Physical shish-kebab modification vs chemical surface coating on expanded polytetrafluoroethylene vascular grafts for enhanced endothelial cell adhesion. Mater Design. 220, 110889 (2022)

    Article  CAS  Google Scholar 

  19. V.P. Galván-Chacón, D. de Melo Pereira, S. Vermeulena, H. Yuan, J. Lia, P. Habibović, Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic. Bioact. Mater. 19, 127–138 (2023)

    Article  PubMed  Google Scholar 

  20. X. Liu, Y. Sun, B. Chen, Y. Li, P. Zhu, P. Wang, S. Yan, Y. Li, F. Yang, G. Ning, Novel magnetic silk fibroin scaffolds with delayed degradation for potential long-distance vascular repair. Bioact. Mater. 7, 126–143 (2022)

    Article  CAS  PubMed  Google Scholar 

  21. Q. Ma, B. Yang, H.H. Li, J.J. Guo, S.Q. Zhao, W. GuoHua, Preparation and properties of photochromic regenerated silk fibroin/Tungsten trioxide nanoparticles hybrid fibers. Compos Commun. 27, 100810 (2021)

    Article  Google Scholar 

  22. M.A. Noguera-Salvà, F. Guardiola-Serrano, M. Laura Martin, A. Marcilla-Etxenike, M.O. Bergo, X. Busquets, P.V. Escribá, Role of the C-terminal basic amino acids and the lipid anchor of the Gγ2 protein in membrane interactions and cell localization. Biochimica et Biophysica Acta (BBA) - Biomembranes 185(Part B), 1536–1547 (2017)

    Article  Google Scholar 

  23. F. Olivier, N. Rochet, S. Delpeux-Ouldriane, J. Chancolon, V. Sarou-Kanian, F. Fayon, S. Bonnamy, Strontium incorporation into biomimetic carbonated calcium-deficient hydroxyapatite coated carbon cloth: biocompatibility with human primary osteoblasts. Mat. Sci. Eng. C 116, 111192 (2020)

    Article  CAS  Google Scholar 

  24. P. Qi, J. Zeng, X. Tong, J. Shi, Y. Wang, K. Sui, Bioinspired synthesis of fiber-shaped silk fibroin-ferric oxide nanohybrid for superior elimination of antimonite. J. Hazard. Mater. 403, 123909 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. Y. Qi, H. Wang, K. Wei, Y. Yang, R.-Y. Zheng, I.S. Kim, K.-Q. Zhang, A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci. 18, 237 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Z.J. Chen, H.H. Shi, L. Zheng, H. Zhang, Y.Y. Cha, H.X. Ruan, Y. Zhang, X.C. Zhang, A new cancellous bone material of silk fibroin/cellulose dual network composite aerogel reinforced by nano-hydroxyapatite filler. Int. J. Biol. Macromol. 182, 286–297 (2021)

    Article  CAS  PubMed  Google Scholar 

  27. C.-W. Seo, I.C. Um, C.W. Rico, M.Y. Kang, Antihyperlipidemic and body fat-lowering effects of silk proteins with different fibroin/sericin compositions in mice fed with high fat diet. J. Agric. Food Chem. 59, 4192–4197 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. W. Tiyasatkulkovit, S. Malaivijitnond, N. Charoenphandhu, L.M. Havill, A.L. Ford, J.L. VandeBerg, Pueraria mirifica extract and puerarin enhance proliferation and expression of alkaline phosphatase and type I collagen in primary baboon osteoblasts. Phytomedicine 21, 1498–1503 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L. Wang, M. Fang, Y. Xia, J. Hou, X. Nan, B. Zhao, X. Wang, Preparation and biological properties of silk fibroin/nano-hydroxyapatite/graphene oxide scaffolds with an oriented channel-like structure. RSC Adv. 10, 10118–10128 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Z. Wenhao, T. Zhang, J. Yan, Q.Y. Li, P. Xiong, Y. Li, Y. Cheng, Y. Zheng, In vitro and in vivo evaluation of structurally-controlled silk fibroin coatings for orthopedic infection and in-situ osteogenesis. Acta Biomater. 116, 223–245 (2020)

    Article  PubMed  Google Scholar 

  31. F. Xing, Z. Chi, R. Yang, X. Derong, J. Cui, Y. Huang, C. Zhou, C. Liu, Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. Int. J. Biol. Macromol. 184, 170–180 (2021)

    Article  CAS  PubMed  Google Scholar 

  32. S. Yang, V.V. Karve, A. Justin, I. Kochetygov, J. Espín, M. Asgari, O. Trukhina, D.T. Sun, L. Peng, W.L. Queen, Enhancing MOF performance through the introduction of polymer guests. Coordin. Chem. Rev. 427, 213525 (2021)

    Article  CAS  Google Scholar 

  33. T. Adalıac, M. Uncubc, Silk fibroin as a non-thrombogenic biomaterial. Int. J. Biol. Macromol. 90, 11–19 (2016)

    Article  Google Scholar 

  34. C. Shuai, H. Sun, Wu. Ping, C. Gao, Y. Yang, W. Guo, D. Yang, Xu. Feng, P. Feng, S. Peng, Biosilicate scaffolds for bone regeneration: influence of introducing SrO. Rsc. Adv. 35, 21749 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 32001017, 31960207, 52061031). This work was also supported by Nanchang Municipal Key Laboratory of 3D Bioprinting Technology and Equipment (No. 2019NCZDSY001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Li, K., Zhou, K. et al. 3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering. Fibers Polym 24, 275–283 (2023). https://doi.org/10.1007/s12221-023-00090-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00090-2

Keywords

Navigation