Skip to main content
Log in

The Relatedness Between Graphene Oxide Lateral Size and the Mechanical Properties of Calcium Alginate Composite Fibers

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

It is widely recognized that combining alginate with graphene oxide (GO) is an effective method in improving the properties of alginate fiber. However, how the lateral size of GO influences the properties of the composite fiber is still unclear. In this work, GO was separated into four kinds of different lateral sizes with the assistance of centrifugation and high-power ultrasound. The tensile strength of calcium alginate/graphene oxide (CaAlg/GO) composite fiber increased with the lateral size of GO. Surprisingly, the combination of large and small GO performed the superior reinforcement effect. The tensile strength and Young’s modulus increased from 407.66 MPa and 13.87 GPa to 556.97 MPa and 20.57 GPa, respectively. In addition, the water absorption ability of CaAlg/GO composite fiber reduced with the decreasing of the lateral size of GO. With significantly improved mechanical properties and fine biocompatibility, the CaAlg/GO composite fibers may have potential applications in the biotechnological, biomedical, and tissue engineering areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z. Sang, W. Zhang, Z. Zhou, H. Fu, Y. Tan, K. Sui, Y. Xia, Carbohydr. Polym. 174, 933 (2017). https://doi.org/10.1016/j.carbpol.2017.07.027

    Article  CAS  PubMed  Google Scholar 

  2. L. Sennerby, T. Röstiund, B. Albrektsson, T. Albrektsson, Biomaterials 8, 49 (1987). https://doi.org/10.1016/0142-9612(87)90029-9

    Article  CAS  PubMed  Google Scholar 

  3. S. Srinivasan, R. Jayasree, K.P. Chennazhi, S.V. Nair, R. Jayakumar, Carbohydr. Polym. 87, 274 (2012). https://doi.org/10.1016/j.carbpol.2011.07.058

    Article  CAS  PubMed  Google Scholar 

  4. Q.S. Kong, Q. Ji, J. Yu, Y.Z. Xia, Mater. Sci. Forum 610, 48 (2009). https://doi.org/10.1002/pi.2296

    Article  CAS  Google Scholar 

  5. Y. Qin, Polym. Int. 57, 171 (2008). https://doi.org/10.1002/pi.2296

    Article  CAS  Google Scholar 

  6. J. Sun, H. Tan, Materials (Basel) 6, 1285 (2013). https://doi.org/10.3390/ma6041285

    Article  CAS  PubMed  Google Scholar 

  7. H. Lee, S. Ahn, L.J. Bonassar, G. Kim, Macromol. Rapid Commun. 34, 142 (2013). https://doi.org/10.1002/marc.201200524

    Article  CAS  PubMed  Google Scholar 

  8. D. Mihailović, Z. Šaponjić, M. Radoičić, T. Radetić, P. Jovančić, J. Nedeljković, M. Radetić, Carbohyd. Polym. 79, 526 (2010). https://doi.org/10.1016/j.carbpol.2009.08.036

    Article  CAS  Google Scholar 

  9. A.C.K. Bierhalz, M.A. da Silva, T.G. Kieckbusch, J. Food Eng. 110, 18 (2012). https://doi.org/10.1016/j.jfoodeng.2011.12.016

    Article  CAS  Google Scholar 

  10. M. Dumont, R. Villet, M. Guirand, A. Montembault, T. Delair, S. Lack, M. Barikosky, A. Crepet, P. Alcouffe, F. Laurent, L. David, Carbohydr. Polym. 190, 31 (2018). https://doi.org/10.1016/j.carbpol.2017.11.088

    Article  CAS  PubMed  Google Scholar 

  11. M. Martí, B. Frígols, B. Salesa, Á. Serrano-Aroca, Eupopean Polym. J. 110, 14 (2019). https://doi.org/10.1016/j.eurpolymj.2018.11.012

    Article  CAS  Google Scholar 

  12. D.H. Yoon, D. Tanaka, T. Sekiguchi, S. Shoji, Macromol. Mater. Eng. 303, 3 (2018)

    Article  Google Scholar 

  13. R. Eivazzadeh-Keihan, F. Radinekiyan, A. Maleki, M. Salimi Bani, Z. Hajizadeh, S. Asgharnasl, Int. J. Biol. Macromol. 140, 407 (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.031

    Article  CAS  PubMed  Google Scholar 

  14. R. Eivazzadeh-Keihan, H.A. MoghimAliabadi, F. Radinekiyan, M. Sobhani, K. Farzane, A. Maleki, H. Madanchi, M. Mahdavi, A.E. Shalan, Rsc. Adv. 11, 17914 (2021). https://doi.org/10.1039/D1RA01300A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. R. Eivazzadeh-Keihan, F. Khalili, H.A.M. Aliabadi, A. Maleki, H. Madanchi, E.Z. Ziabari, M.S. Bani, Int. J. Biol. Macromol. 162, 1959 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.090

    Article  CAS  PubMed  Google Scholar 

  16. R. Eivazzadeh-Keihan, F. Ahmadpour, H.A.M. Aliabadi, F. Radinekiyan, A. Maleki, H. Madanchi, M. Mahdavi, A.E. Shalan, S. Lanceros-Mendez, Int. J. Biol. Macromol. 192, 7 (2021). https://doi.org/10.1016/j.ijbiomac.2021.09.099

    Article  CAS  PubMed  Google Scholar 

  17. Y. Ma, D. Bai, X. Hu, N. Ren, W. Gao, S. Chen, H. Chen, Y. Lu, J. Li, Y. Bai, ACS Appl. Mater. Interfaces 10, 3002 (2018). https://doi.org/10.1021/acsami.7b17835

    Article  CAS  PubMed  Google Scholar 

  18. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  19. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008). https://doi.org/10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  20. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  21. M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, I.A. Aksay, Chem. Mater. 19, 4396 (2007). https://doi.org/10.1021/cm0630800

    Article  CAS  Google Scholar 

  22. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 60 (2007). https://doi.org/10.1038/nature05545

    Article  CAS  PubMed  Google Scholar 

  23. L. Elias, R. Taengua, B. Frigols, B. Salesa, A. Serrano-Aroca, Int. J. Mol. Sci. 20, 3603 (2019). https://doi.org/10.3390/ijms20143603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Chen, H. Peng, X. Wang, F. Shao, Z. Yuan, H. Han, Nanoscale 6, 1879 (2014). https://doi.org/10.1039/C3NR04941H

    Article  CAS  PubMed  Google Scholar 

  25. A. Serrano-Aroca, K. Takayama, A. Tunon-Molina, M. Seyran, S.S. Hassan, P. Pal Choudhury, V.N. Uversky, K. Lundstrom, P. Adadi, G. Palu, A.A.A. Aljabali, G. Chauhan, R. Kandimalla, M.M. Tambuwala, A. Lal, T.M. Abd El-Aziz, S. Sherchan, D. Barh, E.M. Redwan, N.G. Bazan, Y.K. Mishra, B.D. Uhal, A. Brufsky, ACS Nano 15, 8069 (2021). https://doi.org/10.1021/acsnano.1c00629

    Article  CAS  PubMed  Google Scholar 

  26. A.L. Rivera-Briso, F.L. Aachmann, V. Moreno-Manzano, A. Serrano-Aroca, Int. J. Biol. Macromol. 143, 1000 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.034

    Article  CAS  PubMed  Google Scholar 

  27. Y. He, N. Zhang, Q. Gong, H. Qiu, W. Wang, Y. Liu, J. Gao, Carbohyd. Polym. 88, 1100 (2012). https://doi.org/10.1016/j.carbpol.2012.01.071

    Article  CAS  Google Scholar 

  28. F. Wang, L.T. Drzal, Y. Qin, Z. Huang, J. Mater. Sci. 51, 3337 (2015). https://doi.org/10.1007/s10853-015-9649-x

    Article  CAS  Google Scholar 

  29. M. Zhao, D.-B. Xiong, Z. Tan, G. Fan, Q. Guo, C. Guo, Z. Li, D. Zhang, Scr. Mater. 139, 44 (2017). https://doi.org/10.1016/j.scriptamat.2017.06.018

    Article  CAS  Google Scholar 

  30. S. Zhang, Y. Cheng, W. Xu, J. Li, J. Sun, J. Wang, C. Qin, L. Dai, Rsc Adv. 7, 56682 (2017). https://doi.org/10.1039/C7RA12261F

    Article  CAS  Google Scholar 

  31. L. Jin, Q. Chen, X. Hu, H. Chen, Y. Lu, Y. Zhang, H. Zhou, Y. Bai, Cellulose 29, 3889 (2022). https://doi.org/10.1007/s10570-022-04523-8

    Article  CAS  Google Scholar 

  32. X. Hu, E. Su, B. Zhu, J. Jia, P. Yao, Y. Bai, Compos. Sci. Technol. 97, 6 (2014). https://doi.org/10.1016/j.compscitech.2014.03.019

    Article  CAS  Google Scholar 

  33. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (2002). https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  34. G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng, Q. Wu, J. Mater. Sci. 47, 4400 (2012). https://doi.org/10.1007/s10853-012-6294-5

    Article  CAS  Google Scholar 

  35. T. Szabó, O. Berkesi, I. Dékány, Carbon 43, 3186 (2005). https://doi.org/10.1016/j.carbon.2005.07.013

    Article  CAS  Google Scholar 

  36. S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Carbon 44, 3342 (2006). https://doi.org/10.1016/j.carbon.2006.06.004

    Article  CAS  Google Scholar 

  37. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007). https://doi.org/10.1039/B613962K

    Article  CAS  PubMed  Google Scholar 

  38. T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, I. Dekany, Chem. Mater. 18, 2740 (2006). https://doi.org/10.1021/cm060258+

    Article  CAS  Google Scholar 

  39. O. Akhavan, ACS Nano 4, 4174 (2010). https://doi.org/10.1021/nn1007429

    Article  CAS  PubMed  Google Scholar 

  40. O. Akhavan, E. Ghaderi, S.A. Shirazian, Colloid Surf. B 126, 313 (2015). https://doi.org/10.1016/j.colsurfb.2014.12.027

    Article  CAS  Google Scholar 

  41. Y. Fei, Y. Li, S. Han, J. Ma, J. Colloid Interface Sci. 484, 196 (2016). https://doi.org/10.1016/j.jcis.2016.08.068

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52273074), Central government guided local science and technology development fund project, Gansu Provincial Science and Technology Plan Project (Project Number: 22ZY2QA001) and Lanzhou Science and Technology Plan Project Funding (Project Number: 2021-1-44). The work was also supported by Project Funding of Fangda Carbon New Material Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxiao Bai.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 294 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Wu, Y., Hu, X. et al. The Relatedness Between Graphene Oxide Lateral Size and the Mechanical Properties of Calcium Alginate Composite Fibers. Fibers Polym 24, 671–679 (2023). https://doi.org/10.1007/s12221-023-00032-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00032-y

Keywords

Navigation