Skip to main content
Log in

Biodegradation Control of Chitosan Materials by Surface Modification with Copolymers of Glycidyl Methacrylate and Alkyl Methacrylates

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Chitosan is a promising polymer from natural polysaccharides, which is an environmentally friendly compound from renewable raw materials. Chitosan has biodegradability, biocompatibility, and antibacterial and other activities. In this article, we report the biodegradation control of chitosan materials by use of random copolymers based on glycidyl methacrylate and (fluoro)alkyl methacrylates as surface modifiers. We show that grafting of copolymers allows increasing the hydrophobicity of chitosan materials with initial contact angles up to 114° from 89° for films and up to 154° from 123° for aerogels. We demonstrate that modified aerogels retain contact angles of more than 150° for a long contact time with water while the initial aerogel fully wets for 30 s. The resulting chitosan aerogels have high porosity with a pore size of 100–200 µm, and the pore walls are 0.6–0.7-µm-thick film formations. Our study of lyophilic properties of modified chitosan substrates showed a change in the hydrophobicity of the materials as a function of length of the hydrocarbon radical in the side groups of the (fluoro)alkyl methacrylates in the copolymers. We demonstrate that the rate of biodegradation of the resulting materials decreases with an increase in the number of hydrophobic groups in the modifier. The obtained chitosan materials with hydrophobic coatings have potential as a protective layer for wound dressings with an extended service life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ishihara, K. Nakanishi, K. Ono, M. Sato, M. Kikuchi, Y. Saito, H. Yura, T. Matsui, H. Hattori, M. Uenoyama, and A. Kurita, Biomaterials, 23, 833 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. S. Montes and H. Maleki, “Colloidal Metal Oxide Nanoparticles”, pp.337–399, Elsevier, 2020.

  3. G. Zhang, G. Zheng, T. Ren, X. Zeng, and E. van der Heide, Friction, 8, 58 (2020).

    Article  CAS  Google Scholar 

  4. K. Ganesan, T. Budtova, L. Ratke, P. Gurikov, V. Baudron, I. Preibisch, P. Niemeyer, I. Smirnova, and B. Milow, Materials, 11, 2144 (2018).

    Article  PubMed Central  Google Scholar 

  5. S. İlk, A. Ramanauskaitė, B. Koç Bilican, P. Mulerčikas, D. Çam, S. M. Onses, I. Torun, S. Kazlauskaitė, V. Baublys, Ö. Aydin, L. S. Zang, and M. Kaya, Mater. Sci. Eng. C, 112, 110897 (2020).

    Article  Google Scholar 

  6. L. B. Boinovich and A. M. Emelyanenko, Russ. Chem. Rev., 77, 583 (2008).

    Article  CAS  Google Scholar 

  7. B. Zdyrko and I. Luzinov, Macromol. Rapid Commun., 32, 859 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. H. Teisala, M. Tuominen, and J. Kuusipalo, Adv. Mater. Interfaces, 1, 1300026 (2014).

    Article  Google Scholar 

  9. I. S. Bayer, Adv. Mater. Interfaces, 7, 2000095 (2020).

    Article  CAS  Google Scholar 

  10. B. Bhushan and Y. C. Jung, Prog. Mater. Sci., 56, 1 (2011).

    Article  CAS  Google Scholar 

  11. C. Teas, S. Kalligeros, F. Zanikos, S. Stournas, E. Lois, and G. Anastopoulos, Desalination, 140, 259 (2001).

    Article  CAS  Google Scholar 

  12. Z. Xu, Y. Zhao, H. Wang, X. Wang, and T. Lin, Angew. Chemie Int. Ed., 54, 4527 (2015).

    Article  CAS  Google Scholar 

  13. M. A. Nevestenko, E. B. Bryuzgina, O. I. Tuzhikov, E. V. Bryuzgin, and Y. S. Tarasova, Russ. J. Appl. Chem., 93, 556 (2020).

    Article  Google Scholar 

  14. F. Quignard, R. Valentin, and F. Di Renzo, New J. Chem., 32, 1300 (2008).

    Article  CAS  Google Scholar 

  15. D. da Silva, M. Kaduri, M. Poley, O. Adir, N. Krinsky, J. Shainsky-Roitman, and A. Schroeder, Chem. Eng. J., 340, 9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Wu, S. Zivanovic, F. A. Draughon, W. S. Conway, and C. E. Sams, J. Agric. Food Chem., 53, 3888 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Y. Hong, Y. Gong, C. Gao, and J. Shen, J. Biomed. Mater. Res. Part A, 85, 628 (2008).

    Article  Google Scholar 

  18. R. A. A. Muzzarelli, G. Biagini, M. Bellardini, L. Simonelli, C. Castaldini, and G. Fratto, Biomaterials, 14, 39 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Y. Wan, H. Wu, A. Yu, and D. Wen, Biomacromolecules, 7, 1362 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Y. Wang, Y. Su, W. Wang, Y. Fang, S. B. Riffat, and F. Jiang, Carbohydr. Polym., 226, 115242 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Y. Wan, Y. Fang, H. Wu, and X. Cao, J. Biomed. Mater. Res. Part A, 80, 776 (2007).

    Article  Google Scholar 

  22. C. X. Song, V. Labhasetwar, and R. J. Levy, “Proceedings of the Controlled Release Society”, Vol. 23, pp.473–474, 1996.

    Google Scholar 

  23. R. A. Jain, Biomaterials, 21, 2475 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. S. Wei, Y. C. Ching, and C. H. Chuah, Carbohydr. Polym., 231, 115744 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. S. A. Agnihotri, N. N. Mallikarjuna, and T. M. Aminabhavi, J. Control. Release, 100, 5 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. P. Fernandez-Saiz, J. M. Lagarón, and M. J. Ocio, J. Agric. Food Chem., 57, 3298 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. M. Xiao, J. Polym. Res., 28, 321 (2021).

    Article  CAS  Google Scholar 

  28. A. Verlee, S. Mincke, and C. V. Stevens, Carbohydr. Polym., 164, 268 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. W. Song, V. S. Gaware, Ö. V. Rúnarsson, M. Másson, and J. F. Mano, Carbohydr. Polym., 81, 140 (2010).

    Article  CAS  Google Scholar 

  30. C. Su, H. Yang, H. Zhao, Y. Liu, and R. Chen, Chem. Eng. J., 330, 423 (2017).

    Article  CAS  Google Scholar 

  31. E. B. Chernyshova, A. S. Berezin, and O. I. Tuzhikov, Russ. J. Appl. Chem., 90, 1165 (2017).

    Article  CAS  Google Scholar 

  32. S. Takeshita, A. Konishi, Y. Takebayashi, S. Yoda, and K. Otake, Biomacromolecules, 18, 2172 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. K. V. Harish Prashanth and R. N. Tharanathan, Trends Food Sci. Technol., 18, 117 (2007).

    Article  Google Scholar 

  34. H. Sashiwa and S. I. Aiba, Prog. Polym. Sci., 29, 887 (2004).

    Article  CAS  Google Scholar 

  35. K. Tømmeraas, S. P. Strand, W. Tian, L. Kenne, and K. M. Vårum, Carbohydr. Res., 336, 291 (2001).

    Article  PubMed  Google Scholar 

  36. S. Höhne, R. Frenzel, A. Heppe, and F. Simon, Biomacromolecules, 8, 2051 (2007).

    Article  PubMed  Google Scholar 

  37. S. Wang, J. Sha, W. Wang, C. Qin, W. Li, and C. Qin, Carbohydr. Polym., 195, 39 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. W. G. Liu, K. De Yao, and Q. G. Liu, J. Appl. Polym. Sci., 82, 3391 (2001).

    Article  CAS  Google Scholar 

  39. L. Baldino, S. Cardea, and E. Reverchon, Polym. Eng. Sci., 58, 1494 (2018).

    Article  CAS  Google Scholar 

  40. N. A. Ivanova and A. B. Philipchenko, Appl. Surf. Sci., 263, 783 (2012).

    Article  CAS  Google Scholar 

  41. K. Song, A. Gao, X. Cheng, and K. Xie, Carbohydr. Polym., 130, 381 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. N. A. Ivanova, G. I. Rutberg, and A. B. Philipchenko, Macromol. Chem. Phys., 214, 1515 (2013).

    Article  CAS  Google Scholar 

  43. D. W. Jenkins and S. M. Hudson, Chem. Rev., 101, 3245 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. M. Pulat and C. Isakoca, J. Appl. Polym. Sci., 100, 2343 (2006).

    Article  CAS  Google Scholar 

  45. Y. Tokiwa and B. P. Calabia, J. Polym. Environ., 15, 259 (2007).

    Article  CAS  Google Scholar 

  46. E. Bryuzgin, V. Klimov, M. D. Le, A. Navrotskiy, and I. Novakov, Fiber. Polym., 21, 1032 (2020).

    Article  CAS  Google Scholar 

  47. E. V. Bryuzgin, V. V. Klimov, M. D. Le, T. H. Nguyen, A. V. Navrotskiy, and I. A. Novakov, Surf. Innov., 5, 147 (2017).

    Article  Google Scholar 

  48. E. A. Elizalde-Peña, N. Flores-Ramirez, G. Luna-Barcenas, S. R. Vásquez-García, G. Arámbula-Villa, B. García-Gaitán, J. G. Rutiaga-Quiñones, and J. González-Hernández, Eur. Polym. J., 43, 3963 (2007).

    Article  Google Scholar 

  49. H. Sashiwa, N. Yamamori, Y. Ichinose, J. Sunamoto, and S. I. Aiba, Biomacromolecules, 4, 1250 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. J. Xu, S. P. McCarthy, R. A. Gross, and D. L. Kaplan, Macromolecules, 29, 3436 (1996).

    Article  CAS  Google Scholar 

  51. Y. Wu, Y. Zheng, W. Yang, C. Wang, J. Hu, and S. Fu, Carbohydr. Polym., 59, 165 (2005).

    Article  CAS  Google Scholar 

  52. G. E. Luckachan and C. K. S. Pillai, Carbohydr. Polym., 64, 254 (2006).

    Article  CAS  Google Scholar 

  53. V. E. Yudin, I. P. Dobrovolskaya, I. M. Neelov, E. N. Dresvyanina, P. V. Popryadukhin, E. M. Ivan’kova, V. Y. Elokhovskii, I. A. Kasatkin, B. M. Okrugin, and P. Morganti, Carbohydr. Polym., 108, 176 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. V. V. Klimov, E. V. Bryuzgin, M. D. Le, E. A. Zelenova, T. H. Nguyen, A. V. Navrotskii, H. Nishide, and I. A. Novakov, Polym. Sci. Ser. D, 9, 364 (2016).

    Article  CAS  Google Scholar 

  55. J. T. Davies, “Proceedings of the 2nd International Congress of Surface Activity”, Vol. 1, pp.426–438, Butterworths, London, 1957.

    CAS  Google Scholar 

  56. E. V. Bryuzgin, V. V. Klimov, S. A. Repin, A. V. Navrotskiy, and I. A. Novakov, Appl. Surf. Sci., 419, 454 (2017).

    Article  CAS  Google Scholar 

  57. A. Calmon-Decriaud, V. Bellon-Maurel, and F. Silvestre, Blockcopolymers-Polyelectrolytes-Biodegradation, 135, 207 (1998).

    Article  CAS  Google Scholar 

  58. N. Hadjichristidis, Encycl. Polym. Sci. Technol., 6, 38 (2002).

    Google Scholar 

  59. A.E. Mochalova, N. V. Zaborshchikova, A. A. Knyazev, L. A. Smirnova, V. A. Izvozchikova, V. V. Medvedeva, and Y. D. Semchikov, Polym. Sci. — Ser. A, 48, 918 (2006).

    Article  Google Scholar 

  60. Y. Tanaka and H. Kakiuchi, J. Appl. Polym. Sci., 7, 1063 (1963).

    Article  CAS  Google Scholar 

  61. Y. Tanaka and H. Kakiuchi, J. Polym. Sci. Part A Gen. Pap., 2, 3405 (1964).

    Article  CAS  Google Scholar 

  62. J. Galy, A. Sabra, and J. P. Pascault, Polym. Eng. Sci., 26, 1514 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2020-794).

The authors would like to thank Falcon Scientific Editing (https://falconediting.com) for proofreading the English language in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Bryuzgin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryuzgin, E., Bryuzgina, E., Yartseva, V. et al. Biodegradation Control of Chitosan Materials by Surface Modification with Copolymers of Glycidyl Methacrylate and Alkyl Methacrylates. Fibers Polym 23, 2502–2510 (2022). https://doi.org/10.1007/s12221-022-4954-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4954-x

Keywords

Navigation