Skip to main content
Log in

Batch Fabrication and Characterization of ZnO/PLGA/PCL Nanofiber Membranes for Antibacterial Materials

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

As biomaterials with excellent biocompatibility, biodegradation and low toxicity, poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA) are extensively applied as wound dressing and surgical suture in biomedical field. In this paper, an oblique section free surface electrospinning (OSFSE) apparatus was utilized to prepare high-quality and high-output ZnO/PLGA/PCL nanofiber membranes (NFMs) for antibacterial materials, which could significantly increase the production of ZnO/PLGA/PCL NFMs from 0.01–0.1 g/h of traditional electrospinning to 30.84 g/h of OSFSE. The influences of the weight proportion of PLGA and PCL on the viscosity and conductivity of electrospinning solutions along with the yield, morphology and wettability of PLGA/PCL NFMs were researched, and the optimum weight ratio of 6:4 was determined. Then the effects of ZnO contents on the electrospinning solution properties as well as the yield, morphology, structure, wettability, mechanical property and antibacterial performance of ZnO/PLGA/PCL NFMs with the optimal ratio of PLGA and PCL were studied. The results illustrated that additive nano-ZnO could improve markedly the antibacterial effect of NFMs, and the NFMs with 3 wt% nano-ZnO had excellent antibacterial effect on Escherichia coli (95.3 %) and Staphylococcus aureus (95.7 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Sofokleous, E. Stride, and M. Edirisinghe, Pharm. Res., 30, 1926 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. S. Fredenberg, M. Wahlgren, M. Reslow, and A. Axelsson, Int. J. Pharm., 415, 34 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. K. Whang, D. C. Tsai, E. K. Nam, M. Aitken, S. M. Sprague, P. K. Patel, and K. E. Healy, J. Biomed. Mater. Res., 42, 491 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. H. Pan, H. L. Jiang, and W. L. Chen, Biomater, 27, 3209 (2006).

    Article  CAS  Google Scholar 

  5. H. J. Shin, C. H. Lee, I. H. Cho, Y. J. Kim, Y. J. Lee, I. A. Kim, K. D. Park, N. Yui, and J. W. Shin, J. Biomater. Sci. Polym. Ed., 17, 103 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. R. Vasita, K. Shanmugam, and D. S. Katti, Polym. Degrad. Stab., 95, 1605 (2010).

    Article  CAS  Google Scholar 

  7. H. Liu, S. Wang, and N. Qi, J. Appl. Polym. Sci., 125, E468 (2012).

    Article  CAS  Google Scholar 

  8. J. Z. Bei, W. H. Wang, Z. F. Wang, and S. G. Wang, Polym. Adv. Technol., 7, 104 (1996).

    Article  CAS  Google Scholar 

  9. B. Y. Tay, S. X. Zhang, M. H. Myint, F. L. Ng, M. Chandrasekaran, and L. K. A. Tan, J. Mater. Process. Technol., 182, 117 (2007).

    Article  CAS  Google Scholar 

  10. L. Rouxhet, F. Duhoux, O. Borecky, R. Legras, and Y. J. Schneider, J. Biomater. Sci. Polym. Ed., 9, 1279 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. E. D. Boland, K. J. Pawlowski, C. P. Barnes, D. G. Simpson, and G. L. Bowlin, Polym. Nanofibers, 14, 188 (2006).

    Article  CAS  Google Scholar 

  12. M. Zhang, W. Y. Xu, J. M. Wang, J. S. Luan, H. N. Dong, Y. J. Zhang, X. Q. Li, and D. H. Sun, J. Appl. Polym. Sci., doi: https://doi.org/10.1002/app.42030 (2015).

  13. L. Ma, X. Shi, X. Zhang, S. Dong, and L. Li, Phys. Status. Solidi. A., 216, 1900307 (2019).

    Article  CAS  Google Scholar 

  14. S. J. Liu, Y. C. Kau, C. Y. Chou, J. K. Chen, R. C. Wu, and W. L. Yeh, J Membr. Sci, 355, 53 (2010).

    Article  CAS  Google Scholar 

  15. H. K. Makadia and S. J. Siegel, Polymers, 3, 1377 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. R. D. Miao, H. Yu, D. F. Wu, M. Zhang, and X. Li, CN. Plastic Ind., 37, 50 (2009).

    CAS  Google Scholar 

  17. C. Jian, C. Gong, S. Wang, S. Wang, X. Xie, Y. Wei, and J. Yuan, Eur. Polym. J., 55, 235 (2014).

    Article  CAS  Google Scholar 

  18. H. G. Chen, J. Z. Bei, and S. G. Wang, Acta Polym. Sin., 5, 626 (2000).

    Google Scholar 

  19. S. D. Hu, C. Wang, M. T. Cai, S. Y. Zhai, and X. L. Luo, Acta Polym. Sin., 6, 782 (2014).

    Google Scholar 

  20. Y. F. Li, B. H. Wang, W. X. Huang, M. S. Tu, X. D. Wang, and D. Wang, New Chem. Mater., 6, 44 (2002).

    Google Scholar 

  21. D. Lv, R. X. Wang, G. S. Tang, Z. P. Mou, J. D. Lei, J. Q. Han, S. D. Smedt, R. H. Xiong, and C. B. Huang, ACS Appl. Mater. Interfaces, 11, 12880 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. B. Ashok, N. Hariram, S. Siengchin, and A. Varada Rajulu, J. Bioresour. Bioprod., 5, 180 (2020).

    Article  CAS  Google Scholar 

  23. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M. F. Benedett, and F. Fievet, Nano Lett., 6, 866 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. S. Mallakpour, A. Abdolmaleki, and M. Rostami, Polym. Plast. Technol. Eng., 53, 1615 (2014).

    Article  CAS  Google Scholar 

  25. S. Hell, K. Ohkawa, H. Amer, A. Potthast, and T. Rosenau, Nanomater, doi: https://doi.org/10.3390/nano10040671 (2020).

  26. P. Lu and Y.-L. Hsieh, ACS Appl. Mater. Interfaces, 2, 2413 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. C. Li, Q. Li, X. Ni, G. Liu, W. Cheng, and G. Han, Materials, 10, 572 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  28. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, Biomater., 26, 2603 (2005).

    Article  CAS  Google Scholar 

  29. M. J. Zhang, J. X. Cui, T. Lu, G. S. Tang, S. T. Wu, W. J. Ma, and C. B. Huang, Chem. Eng. J., 404, 126347 (2021).

    Article  CAS  Google Scholar 

  30. M. J. Zhang, W. J. Ma, J. X. Cui, S.T. Wu, J. Q. Han, Y. Zou, and C. B. Huang, J. Hazard. Mater., doi:https://doi.org/10.1016/j.jhazmat.2019.121152 (2020).

  31. J. X. Cui, Y. L. Wang, T. Lu, K. M. Liu, and C. B. Huang, J. Colloid Interface Sci., 597, 48 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. M. A. Teixeira, M. C. Paiva, M. T. P. Amorim, and H. P. Felgueiras, Nanomater, doi: https://doi.org/10.3390/nano10030557 (2020).

  33. Y. Liu, X. Liang, R. Zhang, W. Lan, and W. Qin, Polymers, 9, 464 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  34. N. Detta, D. Puppi, F. Chiellini, and E. Chiellini, Tissue Eng. Part A, 14, 898 (2008).

    Google Scholar 

  35. J. S. Varabhas, G. G. Chase, and D. H. Reneker, Polymer, 49, 4226 (2008).

    Article  CAS  Google Scholar 

  36. R. Jiang, T. Yan, Y.-Q. Wang, and Z.-J. Pan, J. Appl. Polym. Sci., 137, 49053 (2020).

    Article  CAS  Google Scholar 

  37. J. J. Li, J. Ji, and L. Q. Wang, Adv. Text. Technol, 27, 91 (2019).

    Google Scholar 

  38. I. Jahan, L. Wang, and X. Wang, Macromol. Mater. Eng., 304, 1800588 (2019).

    Article  CAS  Google Scholar 

  39. C. Huang, H. T. Niu, J. L. Wu, Q. F. Ke, X. M. Mo, and T. Lin, J. Nanomater, doi: https://doi.org/10.1155/2012/473872 (2012).

  40. J. B. Moreira, L. T. Lim, E. d. R. Zavareze, A. R. Guerra Dias, J. A. Vieira Costa, and M. G. de Morais, Food Hydrocoll, 93, 131 (2019).

    Article  CAS  Google Scholar 

  41. A. Ahmed, L. Xu, J. Yin, M. Wang, F. Khan, and M. Ali, Fiber. Polym, 21, 1945 (2020).

    Article  CAS  Google Scholar 

  42. J. Yin and L. Xu, Int. J. Biol. Macromol, 160, 352 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Y. Fang and L. Xu, Beilstein J. Nanotechnol, 10, 2261 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Y. Fang and L. Xu, and M. Wang, Nanomater, doi:https://doi.org/10.3390/nano8070471 (2018).

  45. Z. B. Shao, L. Yu, L. Xu, and M. D. Wang, Nanoscale Res. Lett., doi: https://doi.org/10.1186/s11671-017-2240-4 (2017).

  46. L. Yu, Z. Shao, L. Xu, and M. Wang, Polymers, 9, 658 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  47. J. Gao, S. Chen, D. Tang, L. Jiang, J. Shi, and S. Wang, Trans. Tianjin Univ., 25, 152 (2019).

    Article  CAS  Google Scholar 

  48. N. T. Hiep and B. T. Lee, J. Mater. Sci Mater Med, 21, 1969 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. W. Ding, M.D. Dissertation, Donghua Univ, Shanghai, 2018.

  50. D. W. Hua, R. H. Xiong, K. Braeckmans, B. Scheid, and C. B. Huang, Adv. Func. Mater., 31, 2009005 (2021).

    Article  CAS  Google Scholar 

  51. N. Li, X. H. Qin, and L. Lin, Polym. Eng. Sci., 48, 2362 (2008).

    Article  CAS  Google Scholar 

  52. S. Zou, J. S. Zhao, and C. Chen, Henan Technonol, 5, 75 (2019).

    Google Scholar 

  53. S. S. Ray, S.-S. Chen, N. C. Nguyen, and H. T. Nguyen, Micro Nano Technol., 9, 247 (2019).

    Google Scholar 

  54. A. K. Gaharwar, P. J. Schexnailder, Q. Jin, C. J. Wu, and G. Schmidt, ACS Appl. Mater Interfaces, 2, 3119 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. M. C. Bottino, V. Thomas, and G. M. Janowski, Acta Biomater., 7, 216 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The work is supported financially by National Natural Science Foundation of China (Grant No. 11672198), Jiangsu Higher Education Institutions of China (Grant No. 20KJA130001), and PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Xu.

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Yin, J. & Xu, L. Batch Fabrication and Characterization of ZnO/PLGA/PCL Nanofiber Membranes for Antibacterial Materials. Fibers Polym 23, 1225–1234 (2022). https://doi.org/10.1007/s12221-022-4602-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4602-5

Keywords

Navigation