Skip to main content
Log in

Hollowness Variation with Die Wall Thickness in Melt-Spinning of Polypropylene Hollow Fibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A hollow fiber poses great potential as it can provide superior performance at low weight and low cost. Its unique properties come from its geometry, the presence of void and air inclusion, but controlling it is a challenging problem. This study explores how the geometry of a die influences fiber hollowness. Fibers were extruded from dies with four segmented arcs, 4-C, which had varying die wall thickness and constant inner diameter. The effects of die wall thickness on wall-shear rate, solidification, spinnability, and hollow fiber geometry are evaluated under various processing conditions. Both processing parameters and die wall thickness influence hollow fiber dimensions and hollowness, but die wall thickness has the largest impact. Reduction of die wall thickness decreases fiber wall thickness, increases the outer and inner diameter, and increases hollowness. It can be explained by higher die hollowness and faster extrudate solidification. However, the thinnest die shows reduced spinnability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Aneja, D. G. Bennie, R. J. Collins, H. R. E. Frankfort, S. B. Johnson, B. H. Knox, and E. E. Most, U.S. Patent, 5585182 (1996).

  2. S. Omeroglu, E. Karaca, and B. Becerir, Text. Res. J., 80, 1180 (2010).

    Article  Google Scholar 

  3. A. Suzuki and H. Ohnishi, J. Appl. Polym. Sci., 102, 2600 (2006).

    Article  CAS  Google Scholar 

  4. M. S. Lee and S. Y. Kim, J. Appl. Polym. Sci., 81, 2170 (2001).

    Article  CAS  Google Scholar 

  5. A. de Rovère and R. L. Shambaugh, Ind. Eng. Chem. Res., 40, 176 (2001).

    Article  Google Scholar 

  6. T. H. Oh, M. S. Lee, S. Y. Kim, and H. J. Shim, J. Appl. Polym. Sci., 68, 1209 (1998).

    Article  CAS  Google Scholar 

  7. V. T. Marla, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 45, 2331 (2006).

    Article  CAS  Google Scholar 

  8. Y. Y. Su, S. P. Rwei, L. Y. Wu, Y. T. Lin, T. C. An, W. P. Lin, S. P. Chien, and L. Y. Lin, Polym. Eng. Sci., 51, 704 (2011).

    Article  CAS  Google Scholar 

  9. T. H. Oh, J. Appl. Polym. Sci., 104, 2522 (2007).

    Article  CAS  Google Scholar 

  10. S. J. Rwei, J. Appl. Polym. Sci., 82, 2896 (2001).

    Article  CAS  Google Scholar 

  11. R. Hufenus, Y. Yan, M. Dauner, and T. Kikutani, Materials, 13, 4298 (2020).

    Article  CAS  Google Scholar 

  12. K. Kim, S. J. Doh, J. N. Im, W. Y. Jeong, H. J. An, and D. Y. Lim, Fiber. Polym., 14, 639 (2013).

    Article  CAS  Google Scholar 

  13. T. Oh, Polym. Eng. Sci., 46, 609 (2006).

    Article  CAS  Google Scholar 

  14. E. E. Most, U.S. Patent, 4444710 (1984).

  15. W. Takarada, H. Ito, T. Kikutani, and N. Okui, J. Appl. Polym. Sci., 80, 1575 (2001).

    Article  CAS  Google Scholar 

  16. R. Ruckdashel and E. Shim, J. Eng. Fibers Fabrics, 15, 155892501989968 (2020).

    Article  Google Scholar 

  17. J. A. Brydson, “Flow Properties of Polymer Melts”, 2nd ed., pp.21–34, Godwin in Association with the Plastics and Rubber Institute, London, 1981.

    Google Scholar 

  18. W. Takarada, H. Ito, T. Kikutani, and N. Okui, J. Appl. Polym. Sci., 80, 1582 (2001).

    Article  CAS  Google Scholar 

  19. K. W. Hutchenson, D. D. Edie, and D. M. Riggs, J. Appl. Polym. Sci., 29, 3621 (1984).

    Article  CAS  Google Scholar 

  20. D. Petrulis, J. Appl. Polym. Sci., 92, 2017 (2004).

    Article  CAS  Google Scholar 

  21. C. M. A. Joansson, “The Physics of Melt Spinning”, University of Leeds, England, 1966.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Nonwovens Institute at North Carolina State University for funding this work and their technical staff for their assistance on hollow fiber production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunkyoung Shim.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruckdashel, R., Shim, E. Hollowness Variation with Die Wall Thickness in Melt-Spinning of Polypropylene Hollow Fibers. Fibers Polym 23, 1256–1265 (2022). https://doi.org/10.1007/s12221-022-4498-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4498-0

Keywords

Navigation