Skip to main content
Log in

Application of the Catalyst MnTACN onto Cotton Fabric as a Novel Approach in the H2O2/UV Decolourisation Process

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this article a novel approach for a catalytic advanced oxidation process using H2O2/UV/MnTACN is investigated, for the decolouration of Reactive Blue 4 (RB4) containing wastewater at room temperature. The catalyst 1,4,7-trimethyl-1,4,7-triazacyclononane (MnTACN) was not added to the batch reactor where the advanced oxidation process (AOP) was carried out conventionally, but was first applied to the cotton fabric to form a suitable catalyst carrier with a high specific surface area. With the given experimental parameters (0.777 g/l H2O2; a mercury (Hg) lamp at 500 W; 40 mg/l solution of Reactive Blue 4; room temperature), complete decolourisation with the MnTACN catalyst was achieved in only 20 minutes. When the MnTACN catalyst adsorbed on the cotton fabrics is introduced into the process as a functional textile material, the decolouration of RB4 is much faster, and 100 % decolouration is achieved in 10 minutes. Although pretreatment of the fabric with acid and/or UV/ozone before application of MnTACN influences the amount of adsorbed MnTACN, the decolouration process is almost unaffected over time. Pre-treatment of fabric with chitosan before the application of MnTACN affects the final decolourisation rate and efficiency negatively, and does not act synergistically with the MnTACN. The same functional fabric with adsorbed MnTACN can be used in at least 5 consecutive AOPs, which makes the process more environmentally friendly and cost effective, but also opens the possibility to a continuous wastewater treatment process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Lewis, Color. Technol., 130, 382 (2014).

    Article  CAS  Google Scholar 

  2. J. W. Lee, S. P. Choi, R. Thiruvenkatachari, W. G. Shim, and H. Moon, Dye Pigment., 69, 196 (2006).

    Article  CAS  Google Scholar 

  3. L. Škodič, S. Vajnhandl, J. Volmajer Valh, T. Željko, B. Vončina, and A. Lobnik, Ozone: Sci. Eng., 39, 14 (2017).

    Article  Google Scholar 

  4. S. Vajnhandl and J. V. Valh, J. Environ. Manage., 141, 29 (2014).

    Article  PubMed  Google Scholar 

  5. N. Novak, A. M. Le Marechal, and M. Bogataj, Chem. Eng. J., 151, 209 (2009).

    Article  CAS  Google Scholar 

  6. J. C. Garcia, J. L. Oliveira, A. E. C. Silva, C. C. Oliveira, J. Nozaki, and N. E. de Souza, J. Hazard. Mater., 147, 105 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. B. C. Gilbert, J. R. L. Smith, M. S. Newton, J. Oakes, and R. P. Prats, Org. Biomol. Chem., 1, 1568 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. T. Topalovic, V. A. Nierstrasz, L. Bautista, D. Jocic, A. Navarro, and M. M. C. G. Warmoeskerken, Cellulose, 14, 385 (2007).

    Article  CAS  Google Scholar 

  9. S. Vajnhandl, L. Škodič, M. Simonič, A. Lobnik, and J. Volmajer Valh, Chem. Ind. Chem. Eng. Q., 28, 73 (2022).

    Article  Google Scholar 

  10. X. Li, F. Dong, L. Zhang, Q. Xu, X. Zhu, S. Liang, L. Hu, and H. Xie, Chem. Eng. J., 372, 516 (2019).

    Article  CAS  Google Scholar 

  11. P. Morone and G. Yilan, Acta Innov., 36, 17 (2020).

    Google Scholar 

  12. G. Zheng, L. Polavarapu, L M. Liz-Marzán, I. Pastoriza-Santos, and J. Pérez-Juste, Chem. Commun., 51, 4572 (2015).

    Article  CAS  Google Scholar 

  13. T. Kamal, S. B. Khan, and A. M. Asiri, Cellulose, 23, 1911 (2016).

    Article  CAS  Google Scholar 

  14. T. Kamal, S. B. Khan, and A. M. Asiri, Environ. Pollut., 218, 625 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. L. F. Zemljič, O. Plohl, A. Vesel, T. Luxbacher, and S. Potrč, Int. J. Mol. Sci., 21, 495 (2020).

    Article  PubMed Central  Google Scholar 

  16. S. Hossain and F. Hossain, Int. J. Adv. Res., 8, 26 (2020).

    Article  CAS  Google Scholar 

  17. G. Z. Kyzas, M. Kostoglou, N. K. Lazaridis, and D. N. Bikiaris in “Eco-Friendly Textile Dyeing and Finishing”, 1st ed. (M. Gunay Ed.), pp.177–206, InTech, 2013.

  18. P. A. Carneiro, M. E. Osugi, C. S. Fugivara, N. Boralle, M. Furlan, and M. V. B. Zanoni, Chemosphere, 59, 431 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. W. J. Epolito, Y. H. Lee, L. A. Bottomley, and S. G. Pavlostathis, Dyes Pigment., 67, 35 (2005).

    Article  CAS  Google Scholar 

  20. L. F. Zemljiĉ, Z. Perŝin, and P. Stenius, Biomacromolecules, 10, 1181 (2009).

    Article  Google Scholar 

  21. I. Nicole, J. De Laat, M. Doré, J. P. Duguet, and C. Bonnel, Water Res., 24, 157 (1990).

    Article  CAS  Google Scholar 

  22. D. Čakara, L. Fras, M. Bračič, and K. S. Kleinschek, Carbohydr. Polym., 78, 36 (2009).

    Article  Google Scholar 

  23. R. T. Marcus in “Color for Science, Art and Technology”, 1st ed. (K. Nassau Ed.), pp.31–96, Elsevier Science B.V., 1998.

  24. L. Fras, J. Laine, P. Stenius, K. Stana-Kleinschek, V. Ribitsch, and V. Doleček, J. Appl. Polym. Sci., 92, 3186 (2004).

    Article  CAS  Google Scholar 

  25. J. M. Monteagudo, A. Durán, I. S. Martín, and S. García, Appl. Catal. B Environ., 152–153, 59 (2014).

    Article  Google Scholar 

  26. B. Gözmen, B. Kayan, A. M. Gizir, and A. Hesenov, J. Hazard. Mater., 168, 129 (2009).

    Article  PubMed  Google Scholar 

  27. E. Basturk and M. Karatas, J. Photochem. Photobiol. A Chem., 299, 67 (2015).

    Article  CAS  Google Scholar 

  28. M. Mittersteiner, M. R. Barbieri, J. Colzani, D. R. Scharf, and P. C. de Jesus, J. Mol. Liq., 299, 112171 (2020).

    Article  CAS  Google Scholar 

  29. M. Muruganandham and M. Swaminathan, Dye Pigment., 62, 269 (2004).

    Article  CAS  Google Scholar 

  30. F. L. Moissa, M. Mittersteiner, R. Saugo, T. C. Floriani, and P. C. de Jesus, J. Mol. Liq., 264, 675 (2018).

    Article  CAS  Google Scholar 

  31. K. F. Sibbons, K. Shastri, and M. Watkinson, J. Chem. Soc. Dalt. Trans., 6, 645 (2005).

    Google Scholar 

  32. N. Wang, P. Tang, C. Zhao, Z. Zhang, and G. Sun, Cellulose, 27, 1071 (2020).

    Article  CAS  Google Scholar 

  33. K. Arshad, M. Skrifvars, V. Vivod, J. Volmajer Valh, and B. Vončina, Tekstilec, 57, 118 (2014).

    Article  CAS  Google Scholar 

  34. R. Millaleo, M. Reyes-Díaz, A. G. Ivanov, and M. L. Mora, J. Soil Sci. Plant Nutr., 10, 476 (2010).

    Article  Google Scholar 

  35. B. B. Buchanan, W. Gruissem, and R. L. Jones, “Biochemistry and Molecular Biology of Plants”, 2nd ed., p.1367, American Society of Plant Physiologists, Maryland, 2000.

    Google Scholar 

  36. P. Rutkowski, Fuel Process. Technol., 92, 517 (2011).

    Article  CAS  Google Scholar 

  37. S. Nikolić, V. Lazić, Đ. Veljović, and L. Mojović, Carbohydr. Polym., 164, 136 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Katja Ribič for performing the decolourisation experiments and Darko Golob for the colourimetric measurements.

This work was supported by the Slovenian Research Agency under the Research Programmes P2-0118 Textile Chemistry and P2-0414 Process systems engineering and sustainable development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julija Volmajer Valh.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tušek, L., Zemljič, L.F., Vončina, B. et al. Application of the Catalyst MnTACN onto Cotton Fabric as a Novel Approach in the H2O2/UV Decolourisation Process. Fibers Polym 23, 2657–2666 (2022). https://doi.org/10.1007/s12221-022-4337-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4337-3

Keywords

Navigation