Skip to main content
Log in

Multi-Response Modelling and Optimization of Agave Cantala Natural Fiber and Multi-wall Carbon Nano Tube Reinforced Polymer Nanocomposite: Application of Mixture Design

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The article intends to obtain an environment friendly, low-cost natural fiber (Agave Cantala Fiber) and Multi-walled carbon nanotube (MWCNT) composite by the experimental design approach. More specifically, study is associated with multi-response modelling and optimization of a novel composite material for cleaner manufacturing. The Mixture Design technique is adopted to ensure the mixture components’ multi-response optimization, namely, MWCNT, Cantala fibers, and Epoxy resin. The tensile, flexural, and impact strength of the novel composite material are considered for optimization. The experiments are planned as per the mixture design, and the data is collected on all these responses. The Cox Response Trace plot, Pareto Chart for Standardized Effects, Overlaid Contour plot, and Response Optimizer plot are effectively used to develop predictive models and to identify an optimum combination of the mixture for all the responses. The findings will assist in developing an optimal combination of component mixtures and a predictive model for composite material through the structured and robust statistical methodology. This material will assist in cleaner and greener manufacturing of composite materials, while the approach adopted will help researchers as a template for robust composite material development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Fu and A. Netravali, J. Mater. Sci., 56, 6204 (2021).

    Article  CAS  Google Scholar 

  2. R. Udhayasankar, B. Karthikeyan, and A. Balaji, J. Adhes. Sci. Technol., 34, 1720 (2020).

    Article  CAS  Google Scholar 

  3. F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, J. Compos. Mater., 40, 1511 (2006).

    Article  CAS  Google Scholar 

  4. D. Mueller and A. Krobjilowski, J. Ind. Text., 33, 111 (2003).

    Article  CAS  Google Scholar 

  5. M. Fuqua, S. Huo, and C. Ulven, Polym. Rev., 52, 259 (2012).

    Article  CAS  Google Scholar 

  6. M. R. Abir, W. E. Tay, and H. P. Lee, Compos. Part A Appl. Sci. Manuf., 123, 59 (2019).

    Article  CAS  Google Scholar 

  7. K. P. Kumar and A. S. J. Sekaran, J. Reinf. Plast. Compos., 33, 1879 (2014).

    Article  CAS  Google Scholar 

  8. S. Mahmud, K. M. F. Hasan, M. A. Jahid, K. Mohiuddin, R. Zhang, and J. Zhu, J. Mater. Sci., 56, 7231 (2021).

    Article  CAS  Google Scholar 

  9. B. F. Yousif, A. Shalwan, C. W. Chin, and K. C. Ming, Mater. Des., 40, 378 (2012).

    Article  CAS  Google Scholar 

  10. T. Hojo, Z. Xu, Y. Yang, and H. Hamada, Energy Procedia, 56, 72 (2014).

    Article  CAS  Google Scholar 

  11. S. Kim, J. Moon, G. Kim, and C. Ha, Polym. Test., 27, 801 (2008).

    Article  CAS  Google Scholar 

  12. N. Saba, M. T. Paridah, and M. Jawaid, Constr. Build. Mater., 76, 87 (2015).

    Article  Google Scholar 

  13. M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng, Compos. Sci. Technol., 61, 1437 (2001).

    Article  CAS  Google Scholar 

  14. S. M. Sapuan, A. Leenie, M. Harimi, and Y. K. Beng, Mater. Des., 27, 689 (2006).

    Article  CAS  Google Scholar 

  15. A. Balaji, B. Karthikeyan, J. Swaminathan, and C. Sundar Raj, J. Nat. Fibers, 16, 613 (2019).

    Article  CAS  Google Scholar 

  16. A. Balaji, B. Karthikeyan, J. Swaminathan, and C. Sundar Raj, Fiber. Polym., 18, 1193 (2017).

    Article  CAS  Google Scholar 

  17. B. Galzerano, A. Formisano, M. Durante, F. Iucolano, D. Caputo, and B. Liguori, J. Compos. Mater., 52, 2313 (2017).

    Article  CAS  Google Scholar 

  18. I. Shaik, M. R. Mendonca, S. Keerthan, and P. B. Kumara, Am. J. Mater. Sci., 5, 96 (2015).

    Google Scholar 

  19. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003).

    Article  CAS  Google Scholar 

  20. A. K. Mohanty, M. Misra, and L. T. Dreal, Compos. Interfaces, 8, 313 (2001).

    Article  CAS  Google Scholar 

  21. C. A. Adeyanju, S. Ogunniyi, J. O. Ighalo, A. G. Adeniyi, and S. A. Abdulkareem, J. Mater. Sci., 56, 2797 (2021).

    Article  CAS  Google Scholar 

  22. K. Rahul, H. S. Madhukar, M. N. Karthik, K. B. Pavana, P. D. Kenneth, and D. Loyd, Nanosci Nanotechnol., 7, 34 (2017).

    CAS  Google Scholar 

  23. L. A. Pothan, S. Thomas, and N. R. Neelakantan, J. Reinf. Plast. Compos., 16, 744 (1997).

    Article  CAS  Google Scholar 

  24. A. Balaji, R. Purushothaman, R. Udhayasankar, S. Vijayaraj, and B. Karthikeyan, J. Bio-Tribo-Corrosion, 6, 60 (2020).

    Article  Google Scholar 

  25. S. Radika and M. Sudharsan, Int. J. Innov. Res. Sci. Eng. Technol., 4, 172 (2015).

    Article  Google Scholar 

  26. M. Maniruzzaman, M. H. Rahman, S. M. Hafizuddin, and M. A. Gufur, Asian Text. J., 15, 61 (2006).

    CAS  Google Scholar 

  27. S. S. Bari, A. Chatterjee, and S. Mishra, Polym. Rev., 56, 287 (2016).

    Article  CAS  Google Scholar 

  28. V. Obradović, D. Simić, M. Zrilić, D. B. Stojanović, and P. S. Uskoković, Fiber Polym., 22, 528 (2021).

    Article  CAS  Google Scholar 

  29. A. A. Azeez, K. Y. Rhee, S. J. Park, and D. Hui, Compos. Part B Eng., 45, 308 (2013).

    Article  CAS  Google Scholar 

  30. P. H. C. Camargo, K. G. Satyanarayana, and F. Wypych, Mater. Res., 12, 1 (2009).

    Article  CAS  Google Scholar 

  31. S. Doagou-Rad, A. Islam, and J. S. Jensen, J. Compos. Mater., 52, 3681 (2018).

    Article  CAS  Google Scholar 

  32. P. K. Bellairu, S. Bhat, and K. Madhyastha, AIP Conference Proc., https://doi.org/10.1063/1.5092896 (2019).

  33. D. Ahn, H. J. Choi, S. Y. Yeo, and H. Kim, Fiber. Polym., 22, 442 (2021).

    Article  CAS  Google Scholar 

  34. S. B. Hosseini, J. Nat. Fibers, 14, 311 (2017).

    Article  CAS  Google Scholar 

  35. O. I. Sekunowo, S. I. Durowaye, and G. I. Lawal, Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng., 9, 1 (2015).

    Google Scholar 

  36. J. Park, K. Yoon, and J. Lee, Trans. Electr. Electron. Mater., 12, 98 (2011).

    Article  Google Scholar 

  37. S. Jangam, S. Raja, and K. H. Reddy, J. Compos. Mater., 52, 2365 (2017).

    Article  CAS  Google Scholar 

  38. A. Nourbakhsh, A. Ashori, and A. Kargarfard, Polym. Compos., 37, 3269 (2015).

    Article  CAS  Google Scholar 

  39. P. K. Bellairu, S. Bhat, and E. V. Gijo, Multidiscip. Model Mater. Struct., 17, 507 (2020).

    Article  Google Scholar 

  40. P. Prabhu, S. M. Iqbal, A. Balaji, and B. Karthikeyan, Adv. Compos. Hybrid Mater., 2, 93 (2019).

    Article  CAS  Google Scholar 

  41. A. Balaji, R. Udhayasankar, B. Karthikeyan, J. Swaminathan, and R. Purushothaman, Results Chem., https://doi.org/10.1016/j.rechem.2020.100056 (2020).

  42. R. Sakthivel and D. Rajendran, Int. J. Eng. Trends Technol., 9, 407 (2014).

    Article  Google Scholar 

  43. D. Xing, X. Y. Xi, and P. C. Ma, Compos. Part A Appl. Sci. Manuf., 119, 127 (2019).

    Article  CAS  Google Scholar 

  44. M. Z. R. Khan, S. K. Srivastava, and M. K. Gupta, J. Reinf. Plast. Compos., 37, 1435 (2018).

    Article  CAS  Google Scholar 

  45. A. El Moumen, M. Tarfaoui, H. Benyahia, and K. Lafdi, J. Compos. Mater., 53, 925 (2018).

    Article  CAS  Google Scholar 

  46. M. A. Fentahun, P. Mahmut, and A. Savas, Int. J. Mater. Eng., 8, 40 (2018).

    Google Scholar 

  47. E. Fechová, J. Kmec, A. Vagaská, and D. Kozak, Procedia Eng., 149, 263 (2016).

    Article  Google Scholar 

  48. C. Y. Song, J. Lee, and H. Y. Choi, Eng. Optim., 52, 465 (2020).

    Article  Google Scholar 

  49. T. E. Murphy, K. L. Tsui, and J. K. Allen, Res. Eng. Des., 15, 201 (2005).

    Article  Google Scholar 

  50. D. C. Montgomery and S. R. Voth, J. Qual. Technol., 26, 96 (1994).

    Article  Google Scholar 

  51. R. D. Snee and D. W. Marquardt, Technometrics, 18, 19 (1976).

    Article  Google Scholar 

  52. J. A. Cornell, “Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data”, Wiley, New York, NY, 2011.

    Book  Google Scholar 

  53. A. Bryant and K. Charmaz, “The SAGE Handbook of Grounded Theory”, SAGE Publications Ltd., London, 2012.

    Google Scholar 

  54. A. M. K. Esawi and M. M. Farag, Mater. Des., 28, 2394 (2007).

    Article  CAS  Google Scholar 

  55. R. Andrews and M. C. Weisenberger, Curr. Opin Solid State Mater. Sci., 8, 31 (2004).

    Article  CAS  Google Scholar 

  56. Ubaidillah, W. W. Raharjo, A. Wibowo, Harjana, and S. A. Mazlan, AIP Conf. Proc., doi: https://doi.org/10.1063/1.4943464 (2016).

  57. S. F. Arnold, “Design of Experiments with MINITAB”, The American Statistician, 2006.

  58. S. Liu and H. Neudecker, Metrika, 45, 53 (1997).

    Article  Google Scholar 

  59. M. J. Anderson, P. J. Whitcomb, and M. A. Bezener, “Formulation Simplified: Finding the Sweet Spot through Design and Analysis of Experiments with Mixtures”, Productivity Press, New York, NY, 2018.

    Book  Google Scholar 

  60. L. Y. Chan, Commun. Stat — Theory Methods, 29, 2281 (2000).

    Article  Google Scholar 

  61. U. K. Komal, V. Verma, T. Ashwani, N. Verma, and I. Singh, J. Nat. Fibers, 17, 1026 (2020).

    Article  CAS  Google Scholar 

  62. S. D. Mun, S. J. Lee, and J. H. Song, Fiber. Polym., 22, 249 (2021).

    Article  CAS  Google Scholar 

  63. W. W. Raharjo, R. Soenoko, Y. S. Irawan, and A. Suprapto, J. Nat. Fibers, 15, 98 (2018).

    Article  CAS  Google Scholar 

  64. J. P. Kumar, A. Sugunakar, and C. Nagaraj, IOSR J. Mech. Civ. Eng., 16, 37 (2016).

    Article  CAS  Google Scholar 

  65. M. Šupová, G. S. Martynková, and K. Barabaszová, Sci. Adv. Mater., 3, 1 (2011).

    Article  CAS  Google Scholar 

  66. I. M. Rio-echevarria, J. Ponti, P. Urbán, and D. Gilliland, Nanotoxicology, 13, 923 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. H. Lorenz, J. Fritzsche, A. Das, K. W. Stöckelhuber, R. Jurk, G. Heinrich, and M. Klüppel, Compos. Sci. Technol., 69, 2135 (2009).

    Article  CAS  Google Scholar 

  68. G. Gkikas, N. Barkoula, and A. S. Paipetis, Compos. Part B Eng., 43, 2697 (2012).

    Article  CAS  Google Scholar 

  69. T. R. Frømyr, F. K. Hansen, and T. Olsen, J. Nanotechnol., 2012, 1 (2012).

    Article  CAS  Google Scholar 

  70. Y. Y. Huang and E. M. Terentjev, Polymers, 4, 275 (2012).

    Article  CAS  Google Scholar 

  71. S. Dhakal and S. G. B. Keerthi, Mater. Today Proc., 4, 7592 (2017).

    Article  CAS  Google Scholar 

  72. R. D. T. Filho, F. A. Silva, E. M. R. Fairbairn, and J. A. M. Filho, Constr. Build. Mater., 23, 2409 (2009).

    Article  Google Scholar 

  73. M. Boopalan, M. Niranjanaa, and M. J. Umapathy, Compos. Part B Eng., 51, 54 (2013).

    Article  CAS  Google Scholar 

  74. K. Adekunle, D. Åkesson, and M. Skrifvars, J. Appl. Polym. Sci., 116, 1759 (2010).

    CAS  Google Scholar 

  75. M. M. Stănescu and D. Bolcu, Polymers, 11, 1 (2019).

    Article  CAS  Google Scholar 

  76. S. B. Visweswaraiah and L. Lessard, J. Compos. Mater., 53, 3725 (2019).

    Article  CAS  Google Scholar 

  77. M. G. Suresh and R. Suresh, Int. J. Recent. Technol. Eng., 8, 3954 (2019).

    Google Scholar 

  78. Y. Ma, M. Ueda, T. Yokozeki, T. Sugahara, Y. Yang, and H. Hamada, Open J. Compos. Mater., 7, 227 (2017).

    Article  CAS  Google Scholar 

  79. K. Han, W. Zhou, R. Qin, S. Yang, and L. H. Ma, Fiber. Polym., 22, 469 (2021).

    Article  CAS  Google Scholar 

  80. R. K. Upadhyay, M. Ali, and G. D. Gautam, J. Civ. Eng. Environ. Technol., 2, 81 (2015).

    Google Scholar 

  81. K. Hinkelmann, “Design and Analysis of Experiments”, John Wiley & Sons, Inc., Hoboken, NJ, USA, NY, 2012.

    Book  Google Scholar 

  82. H. Gu, Mater. Des., 30, 3931 (2009).

    Article  CAS  Google Scholar 

  83. T. Krishnan, S. Jayabal, and V. N. Krishna, J. Nat. Fibers, 17, 326 (2020).

    Article  CAS  Google Scholar 

  84. S. Biswas, S. Shahinur, M. Hasan, and Q. Ahsan, Procedia Eng., 105, 933 (2015).

    Article  CAS  Google Scholar 

  85. F. M. AL-Oqla, J. Polym. Environ., 29, 892 (2020).

    Article  CAS  Google Scholar 

  86. H. Modi, S. Chokshi, and D. Patel, Int. J. Eng. Technol. Sci. Res., 4, 595 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreeranga Bhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellairu, P.K., Bhat, S., Gijo, E.V. et al. Multi-Response Modelling and Optimization of Agave Cantala Natural Fiber and Multi-wall Carbon Nano Tube Reinforced Polymer Nanocomposite: Application of Mixture Design. Fibers Polym 23, 1089–1099 (2022). https://doi.org/10.1007/s12221-022-4213-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4213-1

Keywords

Navigation