Skip to main content
Log in

Deformation Behaviour of Polymeric Hybrid Composite under Impact Loading

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This paper presents an experimental and finite element (FE) simulation study on back face bulge formation in p-aramid composite, ultra high molecular weight polyethylene (UHMWPE) composite and p-aramid/UHMWPE hybrid composite under normal projectile impact. The experimental evaluation revels that the back face deformation in p-aramid/UHMWPE hybrid composite has been found 75–80 % and 16–18 % lower than the back face deformation in UHMWPE and p-aramid composite respectively. The hybrid composite with UHMWPE striking faces showed 7–13 % more deformation as compared to with p-aramid striking face. The average percentage difference in finite element simulation and experimental results has been found around 10 %. Further, it has been observed almost 20 % and 38 % more deformations for the hybrid composite of UHMWPE layers at the front and middle position respectively as compared to UHMWPE layers at back end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Shalin, “Polymer Matrix Composite”, Soviet Advanced Composites Technology Series 4, pp.12–22, Springer Science & Business Media, Heidelberg, 2012.

    Google Scholar 

  2. M. A. Meyers, “Dynamic Behavior of Materials”, 2nd ed., pp.31–38, Wiley Publications, New York, 1994.

    Book  Google Scholar 

  3. G. B. Dor, A. Dubinsky, and T. Elperin, Int. J. Prot. Struct., 3, 275 (2012).

    Article  Google Scholar 

  4. G. B. Dor, A. Dubinsky, and T. Elperin, Theor. Appl. Fract. Mech., 33, 185 (2000).

    Article  Google Scholar 

  5. W. J. Cantwell and J. Morton, Composites, 22, 347 (1991).

    Article  CAS  Google Scholar 

  6. D. Fernández, R. Zaera, and J. Fernández, Comput. Struct., 89, 2316 (2011).

    Article  Google Scholar 

  7. N. L. Hancox, “Fibre Composite Hybrid Material”, pp.211–220, Applied Science Press, London, 1981.

    Google Scholar 

  8. W. K. Hong, U. S. Patent, 6676884 (2004).

    Google Scholar 

  9. R. Marissen, Mater. Sci. Appl., 2, 319 (2011).

    CAS  Google Scholar 

  10. I. N. Ward and N. H. Ladizesky, Pure Appl. Chem., 57, 1641 (1985).

    Article  CAS  Google Scholar 

  11. X. Chen, F. Zhu, and G. Wells, Compos. Part B: Eng., 45, 1508 (2013).

    Article  CAS  Google Scholar 

  12. P. K. Porwal and S. L. Phoenix, J. Mech. Mater. Struct., 3, 627 (2008).

    Article  Google Scholar 

  13. G. A. Thomas, “Non-woven Fabrics for Military Applications. In: Military Textiles”, 1st ed. (E. Wilusz Ed.), pp.17–67, CRC Press, Cambridge, 2008.

    Chapter  Google Scholar 

  14. M. Karahan, A. Kus, and R. Eren, Int. J. Impact Eng., 35, 499 (2008).

    Article  Google Scholar 

  15. B. Harris and A. R. Bunsell, Composites, 6, 197 (1975).

    Article  CAS  Google Scholar 

  16. B. Z. Jang, L. C. Chen, C. Z. Wang, H. T. Lin, and R. H. Zee, Compos. Sci. Technol., 34, 305 (1989).

    Article  CAS  Google Scholar 

  17. M. Grujicic, B. Pandurangan, K. L. Koudela, and B. A. Cheeseman, Appl. Surface Sci., 253, 730 (2006).

    Article  CAS  Google Scholar 

  18. P. J. Hazell and T. G. Appleby, Compos. Struct., 91, 103 (2009).

    Article  Google Scholar 

  19. X. Chen, Y. Zhou, and G. Wells, Compos. Part B: Eng., 58, 35 (2014).

    Article  CAS  Google Scholar 

  20. R. J. Muhi, F. Najim, and D. Moura, Compos. Part B: Eng., 40, 798 (2009).

    Article  Google Scholar 

  21. A. K. Singh, D. K. Shukla, and N. E. Prasad, Proc. Structural Integrity, India, 14, 720 (2019).

    Article  Google Scholar 

  22. User’s Manual, “}ANSYS Autodyn 19.0”}, Century Dynamics Inc., 201

  23. Theory Manual, “}AUTODYN 4.0”}, Century Dynamics Inc., 199

  24. T. Lassig, L. Nguyen, M. May, W. Riedel, U. Heisserer, H. Werff, and S. Hiermaier, Int. J. Impact Eng., 75, 110 (2015).

    Article  Google Scholar 

  25. M. Ansari and A. Chakrabarti, Compos. Part B: Eng., 95, 462 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mechanical Engineering Department, Indian Institute of Technology, Kanpur (India) for generous support in carrying out the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Shukla, D.K. & Prasad, N.E. Deformation Behaviour of Polymeric Hybrid Composite under Impact Loading. Fibers Polym 23, 2042–2051 (2022). https://doi.org/10.1007/s12221-022-2082-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-2082-2

Keywords

Navigation