Skip to main content
Log in

Improved Silica Dispersibility in Silica-rubber Compounds for a Tire Tread by Using an Itaconic Acid-based Polymeric Dispersant

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Silica dispersibility in a silica-rubber compound is an important factor determining the braking performance, wear resistance, and rolling resistance of an automobile tire tread. In this study, a poly(itaconic acid-co-acrylamide) (IA-co-AAM) dispersant was synthesized by the copolymerization of IA with AAM as a novel silica dispersant for a wet masterbatch (WMB) system. We confirmed the improved silica dispersibility in the silica-rubber compounds via a rubber process analyzer (RPA) and Mooney viscometer (MV). Based on the MV measurements, the values of MV for the silica-SBR compounds using the dispersant decreased by 30 % compared to those in the absence of the dispersant. This showed a positive effect on the rubber processing workability of the silica-SBR compounds. We also evaluated the dynamic viscoelastic properties of the compounds via a dynamic mechanical analyzer (DMA) and found that the rolling resistance of the compounds for the tire tread area also improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kobayashi, S. Plotkin, and S. K. Ribeiro, Energy Efficiency, 2, 125 (2009).

    Article  Google Scholar 

  2. K. Holmberg, P. Andersson, and A. Erdemir, Tribol. Int., 47, 221 (2012).

    Article  Google Scholar 

  3. K. Hwang, W. Kim, B. Ahn, H. Mun, E. Yu, D. Kim, G. Ryu, and W. Kim, Elastomers Compos., 53, 39 (2018).

    Google Scholar 

  4. A. Roberts, “The Physics of Tire Traction”, p.179, Springer, 1974.

  5. R. Peterson, C. Eckert, and C. Carr, in “The Physics of Tire Traction”, p.223, Springer, 1974.

  6. K. Grosch, Rubber Chem. Technol., 69, 495 (1996).

    Article  CAS  Google Scholar 

  7. C. Yin, Q. Zhang, and D. Gong, Polym. Compos., 35, 1212 (2014).

    Article  CAS  Google Scholar 

  8. J. Valentin, I. Mora-Barrantes, A. Rodriguez, L. Ibarra, and L. Gonzalez, J. Appl. Polym. Sci., 103, 1806 (2007).

    Article  CAS  Google Scholar 

  9. T. Nakatsuka, H. Kawasaki, K. Itadani, and S. Yamashita, J. Appl. Polym. Sci., 27, 259 (1982).

    Article  CAS  Google Scholar 

  10. M. Nasir, B. Poh, and P. Ng, Eur. Polym. J., 24, 961 (1988).

    Article  CAS  Google Scholar 

  11. M. Nasir, B. Poh, and P. Ng, Eur. Polym. J., 25, 267 (1989).

    Article  CAS  Google Scholar 

  12. J. Ten Brinke, S. Debnath, L. A. Reuvekamp, and J. W. Noordermeer, Compos. Sci. Technol., 63, 1165 (2003).

    Article  CAS  Google Scholar 

  13. Y. Wang, L. Liao, J. Zhong, D. He, K. Xu, C. Yang, Y. Luo, and Z. Peng, J. Appl. Polym. Sci., 133, 43571 (2016).

    Google Scholar 

  14. J. W. Lightsey, D. J. Kneiling, and J. M. Long, Rubber World, 218, 35 (1998).

    CAS  Google Scholar 

  15. A. Koski, “Process for Hydrophobicizing Particles, and Their Use as Fillers in Polymer Masterbatches”, U.S. Patents, 2002.

  16. W. Kim, B. Ahn, H. Mun, E. Yu, K. Hwang, and W. Kim, Elastomers Compos., 52, 242 (2017).

    Google Scholar 

  17. U. Goerl, A. Hunsche, A. Mueller, and H. Koban, Rubber Chem. Technol., 70, 608 (1997).

    Article  CAS  Google Scholar 

  18. P. J. Wallen, G. C. Bowman, H. A. Colvin, C. J. Hardiman, and J. E. R. Reyna, U.S. Patents, 8357733B2 (2013).

  19. Y. Gui, J. Zheng, X. Ye, D. Han, M. Xi, and L. Zhang, Compos. Part B-Eng., 85, 130 (2016).

    Article  CAS  Google Scholar 

  20. R. G. Seaman, U.S. Patents, 1867633A (1932).

  21. S. Xiao, Y. Tan, J. Xu, C. Xiong, X. Wang, and S. Su, Appl. Clay Sci., 97, 91 (2014).

    Article  Google Scholar 

  22. J. Y. Lee, T. Lee, K. Kim, B. Kim, G. Kwag, J. Y. Kim, S. Ji, W. Kim, and H. J. Paik, Polym. Int., 63, 908 (2014).

    Article  CAS  Google Scholar 

  23. I. Surya, H. Ismail, and A. Azura, Polym. Test., 32, 1313 (2013).

    Article  CAS  Google Scholar 

  24. A. Nakayama, T. Kasai, M. Izuchi, and F. Nishiura, U.S. Patents, 20120108732A1 (2012).

  25. F. Nishiura, Y. Kanda, and K. Someno, U.S. Patents, 9796819B2 (2017).

  26. J. Kadlcak and L. B. Tunnicliffe, RubberCon, Manchester (2014).

  27. X. B. Wang, C. S. Wang, and D. W. Zhang, In Adv. Mater. Res., 221, 684 (2011).

    Article  Google Scholar 

  28. S. Rooj, A. Das, K. W. Stöckelhuber, N. Mukhopadhyay, A. R. Bhattacharyya, D. Jehnichen, and G. Heinrich, Appl. Clay Sci., 67, 50 (2012).

    Article  Google Scholar 

  29. D. W. Kim, C. H. Kim, H. K. Jung, and Y. G. Kang, Elastomers Compos., 48, 114 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Industrial Core Technology Development Program funded by Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, W.S., Kwon, Y.R., Kim, J.S. et al. Improved Silica Dispersibility in Silica-rubber Compounds for a Tire Tread by Using an Itaconic Acid-based Polymeric Dispersant. Fibers Polym 22, 196–204 (2021). https://doi.org/10.1007/s12221-021-9355-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-9355-z

Keywords

Navigation