Skip to main content
Log in

Characterization of UiO-67 Decoration onto UV-crosslinked-poly(vinyl alcohol) Nanofibes for Adsorption Application

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The applications of poly(vinyl alcohol) for remediation of aqueous systems are limited by its solubility. UV crosslinking was initiated using TiO2 and ZnO as photo-catalysts and citric acid as cross-linker during electrospinning of poly(vinyl alcohol) nanofibers. The UiO-67 metal-organic framework was loaded for enhancing adsorption capability. The concentrations of TiO2, ZnO, and citric acid all affected both swelling and solubility. The optimal conditions for photo-crosslinking of poly(vinyl alcohol) nanofibers were 2 %wt of TiO2 and 7.5 %wt of citric acid. This provided insoluble continuous fibers of 60 to 120 nm with a smooth surface. The UiO-67 metal-organic framework was successfully synthesized with high purity using a modified sonochemical method which exposed the UiO-67 to ultrasonic waves for 30 min at room temperature. The synthesized UiO-67 exhibited a cubic close-packed structure. UiO-67 of up to 7 %wt was incorporated into the poly(vinyl alcohol), producing the crosslinked- poly(vinyl alcohol) composite nanofibers containing UiO-67. The composite nanofibers had a higher specific surface area and smaller pore size than the neat poly(vinyl alcohol) nanofibers. This could be due to UiO-67 incorporation producing micropores, which increased the surface area and enhanced phosphate removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Huang, Y. Zhang, and D. Li, J. Environ. Manage., 193, 470 (2017).

    Article  CAS  Google Scholar 

  2. Z. Ajmal, A. Muhmood, M. Usman, S. Kizito, J. Lu, R. Dong, and S. Wu, J. Colloid Interface Sci., 528, 145 (2018).

    Article  CAS  Google Scholar 

  3. Md. R. Awual, J. Clean. Prod., 228, 1311 (2019).

    Article  CAS  Google Scholar 

  4. L. Wang, J. Wang, C. He, W. Lyu, W. Zhang, W. Yan, and L. Yang, Colloids Surf. A Physicochem. Eng. Asp., 561, 236 (2019).

    Article  CAS  Google Scholar 

  5. T. Liu, S. Xu, S. Lu, P. Qin, B. Bi, H. Ding, Y. Liu, X. Guo, and X. Liu, Sci. Total Environ., 651, 2247 (2019).

    Article  CAS  Google Scholar 

  6. S. P. Boeykens, M. N. Piol, L. S. Legal, A. B. Saralegui, and C. Vazquez, J. Environ. Manage., 203, 888 (2017).

    Article  CAS  Google Scholar 

  7. T. Momic, T. L. Pašti, U. Bogdanovic, V. Vodnik, A. Mrakovic, Z. RakoIevic, V. B. Pavlovic, and V. Vasic, J. Nanomater., doi: https://doi.org/10.1155/2016/8910271 (2016).

  8. J. Henych, P. Janos, M. Kormunda, J. Tolasz, and V. Stengl, Arab. J. Chem., 12, 4258 (2019).

    Article  CAS  Google Scholar 

  9. P. Janos, P. Kuran, M. Kormunda, V. Stengl, T. M. Grygar, M. Dosek, M. Stastny, J. Ederer, V. Pilarova, and L. Vrtoch, J. Rare Earths., 32, 360 (2014).

    Article  CAS  Google Scholar 

  10. J. L. Acero, F. J. Benítez, F. J. Real, and M. González, J. Hazard. Mater., 153, 320 (2008).

    Article  CAS  Google Scholar 

  11. A. Chanda, S. K. Khetan, D. Banerjee, A. Ghosh, and T. J. Collins, J. Am. Chem. Soc., 128, 12058 (2006).

    Article  CAS  Google Scholar 

  12. K. C. H. M. Legierse, H. J. M. Verhaar, W. H. J. Vaes, J. H. M. D. Bruijn, and J. L. M. Hermens, Environ. Sci. Technol., 33, 917 (1999).

    Article  CAS  Google Scholar 

  13. Q. Yang, X. Wang, W. Luo, J. Sun, Q. Xu, F. Chen, J. Zhao, S. Wang, F. Yao, D. Wang, X. Li, and G. Zeng, Bioresour. Technol., 247, 537 (2018).

    Article  CAS  Google Scholar 

  14. T. Liao, T. Li, X. Su, X. Yu, H. Song, Y. Zhu, and Y. Zhang, Bioresour. Technol., 263, 207 (2018).

    Article  CAS  Google Scholar 

  15. V. C. Srivastava, I. D. Mall, and I. M. Mishra, Chem. Eng. J., 132, 267 (2007).

    Article  CAS  Google Scholar 

  16. W. Salomon, C. Roch-Marchal, P. Mialane, P. Rouschmeyer, C. Serre, M. Haouas, F. Taulelle, S. Yang, L. Ruhlmann, and A. Dolbecq, Chem. Commun., 51, 2972 (2015).

    Article  CAS  Google Scholar 

  17. S. Øien, G. Agostini, S. Svelle, E. Borfecchia, K. A. Lomachenko, L. Mino, E. Gallo, S. Bordiga, U. Olsbye, K. P. Lillerud, and C. Lamberti, Chem. Mater., 27, 1042 (2015).

    Article  Google Scholar 

  18. C. Kutzscher, G. Nickerl, I. Senkovska, V. Bon, and S. Kaskel, Chem. Mater., 28, 2573 (2016).

    Article  CAS  Google Scholar 

  19. L. G. Ding, B. J. Yao, W. L. Jiang, J. T. Li, Q. J. Fu, Y. A. Li, Z. H. Liu, J. P. Ma, and Y. B. Dong, Inorg. Chem., 56, 2337 (2017).

    Article  CAS  Google Scholar 

  20. B. Wang, H. Huang, X. L. Lv, Y. Xie, M. Li, and J. R. Li, Inorg. Chem., 53, 9254 (2014).

    Article  CAS  Google Scholar 

  21. H. Li, K. Wang, Y. Sun, C. T. Lollar, J. Li, and H. C. Zhou, Mater. Today., 21, 108 (2018).

    Article  CAS  Google Scholar 

  22. Q. Yang, Y. Wang, J. Wang, F. Liu, N. Hu, H. Pei, and W. Yang, Food Chem., 254, 241 (2018).

    Article  CAS  Google Scholar 

  23. J. Yu, W. Xiong, X. Li, Z. Yang, J. Cao, M. Jia, R. Xu, and Y. Zhang, Micropor. Mesopor. Mat., 290, 109642 (2019).

    Article  CAS  Google Scholar 

  24. S. Ø. Ødegaard, B. Bouchevreau, K. Hylland, L. Wu, R. Blom, C. Grande, U. Olsbye, M. Tilset, and K. P. Lillerud, Inorg. Chem., 55, 1986 (2016).

    Article  Google Scholar 

  25. V. Bon, I. Senkovska, M. S. Weissb, and S. Kaskela, CrystEngComm., 15, 9572 (2013).

    Article  CAS  Google Scholar 

  26. W. A. Maza, R. Padilla, and A. J. Morris, J. Am. Chem. Soc., 25, 8161 (2015).

    Article  Google Scholar 

  27. X. Zhu, B. Li, J. Yang, Y. Li, W. Zhao, J. Shi, and J. Gu, ACS Appl. Mater. Interfaces, 7, 223 (2015).

    Article  CAS  Google Scholar 

  28. N. A. Khan and S. H. Jhung, Angew. Chem., 124, 1224 (2012).

    Article  Google Scholar 

  29. G. Liu and Y. Lin, Anal. Chem., 77, 5894 (2005).

    Article  CAS  Google Scholar 

  30. W. Xiong, J. Tong, Z. Yang, G. Zeng, Y. Zhou, D. Wang, P. Song, R. Xu, C. Zhang, and M. Cheng, J. Colloid Interface Sci., 493, 17 (2017).

    Article  CAS  Google Scholar 

  31. L. A. Mercante, V. P. Scagion, F. L. Migliorini, L. H. C. Mattoso, and D. S. Correa, Trends Anal. Chem., 91, 91 (2017).

    Article  CAS  Google Scholar 

  32. W. Zhang, M. Chen, and G. Diao, Carbohydr. Polym., 86, 1410 (2011).

    Article  CAS  Google Scholar 

  33. M. Teng, F. Li, B. Zhang, and A. A. Taha, Colloids Surf. A Physicochem. Eng. Asp., 385, 229 (2011).

    Article  CAS  Google Scholar 

  34. P. Jiamjirangkul, T. Inprasit, V. Intasanta, and A. Pangon, Chem. Eng. Sci., doi: https://doi.org/10.1016/j.ces.2020.115650 (2020).

  35. K. Singbumrung, K. Motina, P. Pisitsak, P. Chitichotpanya, S. Wongkasemjit, and T. Inprasit, Fiber. Polym., 19, 1373 (2018).

    Article  CAS  Google Scholar 

  36. M. Armstrong, C. Balzer, B. Shan, and B. Mu, Langmuir, 33, 9066 (2017).

    Article  CAS  Google Scholar 

  37. Y. Zhang, S. Yuan, X. Feng, H. Li, J. Zhou, and B. Wang, J. Am. Chem. Soc., 138, 5785 (2016).

    Article  CAS  Google Scholar 

  38. E. Karimi, A. Raisi, and A. Aroujalian, Polymer, 99, 642 (2016).

    Article  CAS  Google Scholar 

  39. A. Abdulkhania, E. H. Marvast, A. Ashori, Y. Hamzeh, and A. N. Karimi, Int. J. Biol. Macromol., 62, 379 (2013).

    Article  Google Scholar 

  40. R. V. Kumar and P. P. Kundu, RSC Adv., 5, 83436 (2015).

    Article  Google Scholar 

  41. B. Zeytuncu, S. Akman, O. Yucel, and M. V. Kahraman, Mater. Res., 17, 565 (2014).

    Article  Google Scholar 

  42. Y. Liu, B. Bolgera, P. A. Cahill, and G. B. McGuinness, Mater. Lett., 63, 419 (2009).

    Article  CAS  Google Scholar 

  43. J. Zeng, H. Hou, J. H. Wendorff, and A. Greiner, Macromol. Rapid Commun., 26, 1557 (2005).

    Article  CAS  Google Scholar 

  44. M. Jia, Z. Yang, H. Xu, P. Song, W. Xiong, J. Cao, Y. Zhang, Y. Xiang, J. Hu, C. Zhou, Y. Yang, and W. Wang, Chem. Eng. J., doi: https://doi.org/10.1016/j.cej.2020.124388 (2020).

  45. A. D. S. Montallana, B.-Z. Lai, J. P. Chu, and M. R. Vasquez Jr., Mater. Today Commun., doi: https://doi.org/10.1016/j.mtcomm.2020.101183 (2020).

  46. P. Prasannalakshmi and N. Shanmugam, Mater. Sci. Semicond. Process., 61, 114 (2017).

    Article  CAS  Google Scholar 

  47. X. Q. Zhan, F. C. Tsai, L. Xie, K. D. Zhang, H. L. Liu, N. Ma, D. Shi, and T. Jiang, Nanomaterials, 8, 655 (2018).

    Article  Google Scholar 

  48. N. M. Shamhari, B. S. Wee, S. F. Chin, and K. Y. Kok, Acta Chim. Slov., 65, 578 (2018).

    Article  CAS  Google Scholar 

  49. J. Murphy and J. P. Rile, Anal. Chim. Acta, 27, 31 (1962).

    Article  CAS  Google Scholar 

  50. Y. Tang, E. Zong, H. Wan, Z. Xu, S. Zheng, and D. Zhu, Micropor. Mesopor. Mat., 155, 192 (2012).

    Article  CAS  Google Scholar 

  51. Z. He and C. W. Honeycutt, Commun. Soil Sci. Plant Anal., 36, 1373 (2005).

    Article  CAS  Google Scholar 

  52. P. Worsfold, I. McKelvie, and P. Monbet, Anal. Chim. Acta, 918, 8 (2016).

    Article  CAS  Google Scholar 

  53. Z. H. Ping, Q. T. Nguyen, S. M. Chen, J. Q. Zhou, and Y. D. Ding, Polymer, 42, 8461 (2001).

    Article  CAS  Google Scholar 

  54. S. K. Nataraj, B. H. Kim, J. H. Yun, D. H. Lee, T. M. Aminabhavi, and K. S. Yang, Carbon Lett., 9, 108 (2008).

    Article  Google Scholar 

  55. C. Wu, R. Sun, Q. Zhang, and G. Zhong, Carbohydr. Polym., doi: https://doi.org/10.1016/j.carbpol.2020.116985 (2020).

  56. I. Ahmed and S. H. Jhung, Chem. Eng. J., 310, 197 (2017).

    Article  CAS  Google Scholar 

  57. T. G. Grissom, C. H. Sharp, P. M. Usov, D. Troya, A. J. Morris, and J. R. Morris, J. Phys. Chem. C, 122, 16060 (2018).

    Article  CAS  Google Scholar 

  58. M. Thommes, K. Kaneko, A.V. Neimark, J. P. Olivier, F. R. Reinoso, J. Rouquerol, and K. S. W. Sing, Pure Appl. Chem., 87, 1051 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to receive support from Scholarship for talent student to study graduate program in Faculty of Science and Technology Thammasat University [Contract no. 04/2561], TU research under Thammasat University [Grant no. TUGR 2/15/2562], Research Fund for DPST Graduate with First Placement, The Institute for the Promotion of Teaching Science and Technology (IPST) Thailand [Grant no.009/2016], and all staffs at the Department of Material and Textile Technology, Faculty of Science and Technology, Thammasat University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thitirat Inprasit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pukkao, J., Pisitsak, P., Inprasit, W. et al. Characterization of UiO-67 Decoration onto UV-crosslinked-poly(vinyl alcohol) Nanofibes for Adsorption Application. Fibers Polym 23, 58–67 (2022). https://doi.org/10.1007/s12221-021-1417-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-1417-8

Keywords

Navigation