Skip to main content
Log in

Reusable UiO-66-NH2 Functionalized Polyacrylonitrile Nanofiber Membrane for Effective Removal of Cr(VI) from Water

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Metal–organic framework UiO-66-NH2 powder used for effective removal of Cr(VI) from water is difficult to recover after usage. In this study, UiO-66-NH2 was in-situ grown on polyacrylonitrile (PAN) nanofiber membrane using water as solvent and trifluoroacetic acid as structure regulator, via hydrothermal method for adsorption of Cr(VI) ions. The optimal proportion of trifluoroacetic acid, hydrothermal synthesis time and pH level were 30%, 4 h and pH = 2, respectively. Scanning electron microscopy showed that UiO-66-NH2 was uniformly and densely coated on the PAN nanofibers. N2 adsorption–desorption experiments and thermogravimetric analysis showed large surface area (680.99 m2/g) and good thermal stability of PAN@UiO-66-NH2, compared to PAN nanofiber membrane. The adsorption capacity of PAN@UiO-66-NH2 nanofiber membrane for Cr(VI) at 298 K was 312.25 mg/g. Kinetic studies revealed that the adsorption process was consistent with Langmuir isotherm and pseudo-second-order model. The composite showed good reusability in Cr(VI) removal in 5 cycles. Based on Zeta potential, the influence of pH and XPS analysis, PAN@UiO-66-NH2 nanofiber membrane effectively adsorbs Cr(VI) through electrostatic interaction. PAN@UiO-66-NH2 nanofiber membrane is therefore considered as an efficient and reusable adsorbent with high potential for Cr(VI) removal in industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Q. Feng, D.S. Wu, Y. Zhao, A.F. Wei, H. Fong, Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. J. Hazard. Mater. 344, 819–828 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. Y.Y. Huang, H.L. Zheng, X.B. Hu, Y.Y. Wu, X.H. Tang, Q. He, S.Y. Peng, Enhanced selective adsorption of lead(II) from complex wastewater by DTPA functionalized chitosan-coated magnetic silica nanoparticles based on anion-synergism. J. Hazard. Mater. 422, 126856 (2021)

    Article  PubMed  Google Scholar 

  3. H.T. Zeng, H.H. Zeng, H. Zhang, A. Shahab, K. Zhang, Y.Q. Lu, L. Nabi, F.Z. Naseem, H. Ullah, Efficient adsorption of Cr(VI) from aqueous environments by phosphoric acid activated eucalyptus biochar. Clean Prod. 286, 124964 (2020)

    Article  Google Scholar 

  4. A.K. Verma, R.R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of color from textile wastewaters. J. Environ. Manag. 93(1), 154–168 (2012)

    Article  CAS  Google Scholar 

  5. Z.Z. Su, B.X. Zhang, J.L. Zhang, X.Y. Cheng, F.Y. Zhang, Q. Wan, L.F. Liu, X.N. Tan, D.X. Tan, L.R. Zheng, J.L. Zhang, Ultra-small UiO-66-NH2 nanoparticles immobilized on g-C3N4 nanosheets for enhanced catalytic activity. Green Energy Environ. 7(3), 512–518 (2022)

    Article  CAS  Google Scholar 

  6. M. Guo, S.Y. Dong, J. Xiong, X.Y. Jin, P.F. Wan, S.J. Lu, Y.F. Zhang, J. Xu, H.S. Fan, Flexible core-shell PAN/CNTs@PVDF-HFP/UiO-66-NH2 hybrid nanofibers membrane for advanced lithium-ion batteries separator. Mater. Today Chem. 30, 101552 (2023)

    Article  CAS  Google Scholar 

  7. J.J. Pan, L.J. Wang, Y.X. Shi, L.L. Li, Z. Xu, H. Sun, F. Guo, W.L. Shi, Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics. Sep. Purif. Technol. 284, 120270 (2022)

    Article  CAS  Google Scholar 

  8. Y.J. Cui, B. Li, H.J. He, W. Zhou, B.L. Chen, G.D. Qian, Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 49(3), 483–493 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. X.L. Liu, Metal-organic framework UiO-66 membranes. Front. Chem. Sci. Eng. 14(2), 216–232 (2020)

    Article  CAS  Google Scholar 

  10. S.B. Wu, Y.J. Ge, Y.Q. Wang, X. Chen, F.F. Li, X. Han, Adsorption of Cr(VI) on nano Uio-66-NH2 MOFs in water. Environ. Technol. 39(15), 1937–1948 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. I. Stassen, J.H. Dou, C. Hendon, M. Dinca, Chemiresistive sensing of ambient CO2 by an autogenously hydrated Cu3(hexaiminobenzene)2 framework. ACS Cent. Sci. 5(8), 1425–1431 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. H. Wang, S. Wang, S.X. Wang, L.B. Zhang, Y. Zhou, F. Yang, Efficient and selective removal of Cr(VI) by the modified UiO-66-NH2 with phenothiazine-N-rhodanine from aqueous solution: performance and mechanisms. Micropor. Mesopor. Mater. 336, 111834 (2022)

    Article  CAS  Google Scholar 

  13. Y.L. Wang, N. Zhang, D.N. Chan, D. Ma, G.G. Liu, X.G. Zou, Y.P. Chen, R.J. Shu, Q.Y. Song, W.Y. Lv, Facile synthesis of acid-modified UiO-66 to enhance the removal of Cr(VI) from aqueous solutions. Sci. Total. Environ. 682, 118–127 (2019)

    Article  CAS  PubMed  ADS  Google Scholar 

  14. X.L. Zhang, Y.X. Sun, Y.F. Liu, Z.Y. Zhai, S.Q. Guo, L.C. Peng, Y. Qin, C.J. Li, UiO-66-NH2 fabrics: role of Trifluoroacetic acid as a modulator on MOF uniform coating on electrospun nanofibers and efficient decontamination of chemical warfare agent simulants. Appl. Mater. Interfaces 13, 39976–39984 (2021)

    Article  CAS  Google Scholar 

  15. S. Jamshidifarda, S. Koushkbaghib, S. Hosseini, S. Rezaeid, A. Karamipoure, A. Jafariradf, M. Iranig, Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. J. Hazard. Mater. 368, 10–20 (2019)

    Article  Google Scholar 

  16. L. Zhang, H. Chen, X. Bai, S. Wang, L.L. Li, L. Shao, W.X. He, Y.N. Li, T.Q. Wang, X.M. Zhang, J.Y. Chen, Y. Fu, Fabrication of 2D metal-organic framework nanosheet@fiber composites by spray technique. Chem. Commun. 55(57), 8293 (2019)

    Article  CAS  Google Scholar 

  17. H.Z. Rada, R.H. Abid, H.Q. Sun, J. Shang, J.Y. Lie, Y.D. He, S.M. Liu, S.B. Wang, Effects of –NO2 and –NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. Prog. Nat. Sci.-Mater. 28(02), 160–167 (2018)

    Article  CAS  Google Scholar 

  18. S.B. Wang, Y. Lin, J. Yang, L. Shi, G. Yang, X.P. Zhuang, Z.H. Li, UiO-66-NH2 functionalized cellulose nanofibers embedded in sulfonated polysulfone as proton exchange membrane. Int. J. Hydrogen Energy 44(36), 106–115 (2021)

    Google Scholar 

  19. F. Ahmadijokani, S. Ahmadipouya, M.H. Haris, M. Rezakazemi, A. Bokhari, H. Molavi, M. Ahmadipour, S.Y. Pung, J.J. Klemeš, T.M. Aminabhavi, M. Arjmand, Magnetic nitrogen-rich UiO-66 metal−organic framework: an efficient adsorbent for water treatment. Appl. Mater. Interfaces 15, 30106–30116 (2023)

    Article  CAS  Google Scholar 

  20. Y.A.Y.A. Mohammed, A.M. Abdel-Mohsen, Q.J. Zhang, M. Younas, L.B. Zhong, J.C.E. Yang, Y.M. Zheng, Facile synthesis of ZIF-8 incorporated electrospun PAN/PEI nanofibrous composite membrane for efficient Cr(VI) adsorption from water. Chem. Eng. J. 461, 141972 (2023)

    Article  CAS  Google Scholar 

  21. K.K. Ma, T. Islamoglu, Z. Chen, Z.J. Chen, P. Li, M.C. Wasson, Y.W. Chen, Y.F. Wang, G.W. Peterson, J.H. Xin, O.K. Farha, Scalable and template-free aqueous synthesis of zirconium-based metal–organic framework coating on textile fiber. JCAS 141(39), 15626–15633 (2019)

    Article  CAS  Google Scholar 

  22. F. Yu, L.S. Cen, C.H. Lei, F.C. Zhu, L. Zhou, H.L. Zhu, B. Yu, Fabrication of recyclable UiO-66-NH2/PVDF hybrid fibrous membrane for Cr(VI) removal in wastewater. J. Ind. Eng. Chem. 123, 104–115 (2023)

    Article  CAS  Google Scholar 

  23. A.S. Shamsabadi, M. Ranjbar, H. Tavanai, Electrospinning of gold nanoparticles incorporated PAN nanofibers via in-situ laser ablation of gold in electrospinning solution. Mater. Res. Express 6, 055051 (2019)

    Article  CAS  ADS  Google Scholar 

  24. R. Soltani, R. Pelalak, M. Pishnamazi, A. Marjani, S.M. Sarkar, A.B. Albadarin, S. Shirazian, Novel bimodal micro-mesoporous Ni50Co50-LDH/UiO-66-NH2 nanocomposite for Tl(I) adsorption. Arab. J. Chem. 14(4), 103058 (2021)

    Article  CAS  Google Scholar 

  25. L.P. Wang, X.R. Dai, Z. Man, X.R. Li, Y.F. Jiang, D.Z. Liu, H. Xiao, S.J. Sha, Dynamics and treatability of heavy metals in pig farm effluent wastewater by using UiO-66 and UiO-66-NH2 nanomaterials as adsorbents. Water Air Soil Pollut. 232(7), 294 (2021)

    Article  CAS  ADS  Google Scholar 

  26. X.F. Zhang, Z.G. Wang, J.F. Yao, Y. Feng, Y.X. Zhong, J.Q. Liao, Y.G. Wang, Adsorptive desulfurization from the model fuels by functionalized UiO-66(Zr). Fuel 234, 256–262 (2018)

    Article  CAS  Google Scholar 

  27. R. Xu, T. Wu, C. Li, X.L. Jiao, D.R. Chen, Self-assembled MOF-on-MOF nanofabrics for synergistic detoxification of chemical warfare agent simulants. Appl. Mater. Interfaces 15, 30360–30371 (2023)

    Article  CAS  Google Scholar 

  28. X.K. Hao, Z.Y. Zhai, Y.X. Sun, C.J. Li, Preparation and performance characterization of flexible and washable Zr-MOFs composite nanofiber membrane. Acta Chim. Sinica 80(1), 49–55 (2022)

    Article  CAS  Google Scholar 

  29. K. Pattarith, D. Nugroho, S. Nanan, R. Benchawattananon, Cellulose modified with polyethylenimine (PEI) using microwave methodology for adsorption of chromium from aqueous solutions. Molecules 28, 4514 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Z.Y. Kang, H. Gao, X.L. Ma, X.D. Jia, D.S. Wen, Fe–Ni/MWCNTs nano-composites for hexavalent chromium reduction in aqueous environment. Molecules 28, 4412 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez, M.E. Zappi, Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: a review. Clean. Eng. Technol. 1, 100032 (2020)

    Article  Google Scholar 

  32. M. Jurcic, W.J. Peveler, C.N. Savory, D.K. Bucar, A.J. Kenyon, D.O. Scanlon, I.P. Parkin, Sensing and discrimination of explosives at variable concentration with a large-pore MOF as part of a luminescent array. Appl. Mater. Interfaces 501(12), 518–524 (2019)

    Google Scholar 

  33. S.Q. Han, X.L. Zhou, H.H. Xie, X.H. Wang, L.Z. Yang, H.L. Wang, C. Hao, Chitosan-based composite microspheres for treatment of hexavalent chromium and EBBR from aqueous solution. Chemosphere 305, 135486 (2022)

    Article  CAS  PubMed  Google Scholar 

  34. S.J. Wu, M.Y. Li, L.L. Xin, H.M. Long, X.P. Gao, Efficient removal of Cr(VI) by triethylenetetramine modified sodium alginate/carbonized chitosan composite via adsorption and photocatalytic reduction. J. Mol. Liq. 366, 120160 (2022)

    Article  CAS  Google Scholar 

  35. H.Z. Xie, L.W. Yan, H. Chen, C.G. Xiong, L.Q. Wang, Q. Xu, X. Li, Q.H. Zhou, Cr(VI) adsorption from aqueous solution by UiO-66 modified corncob. Sustainability 13(23), 685969 (2021)

    Article  Google Scholar 

  36. L.F. Ren, X.D. Gao, X.Y. Zhang, T.T. Qiang, Preparation and absorption performance of UiO-66-NH2 /MoS2 @PUF for Cr(VI). Fine Chem. 40(02), 398–406 (2023)

    Google Scholar 

  37. W.A. El-Mehalmey, A.H. Ibrahim, A.A. Abugable, M.H. Hassan, R.R. Haikal, S.G. Karakalos, O. Zaki, M.H. Alkordi, Metal–organic framework@silica as a stationary phase sorbent for rapid and cost-effective removal of hexavalent chromium. J. Mater. Chem. A 10, 1039 (2018)

    Google Scholar 

  38. Y.R. Peng, M. Azeem, R.H. Li, L.B. Xing, Y.M. Li, Y.C. Zhang, Z.Q. Guo, Q. Wang, H.H. Ngo, G.Z. Qu, Z.Q. Zhang, Zirconium hydroxide nanoparticle encapsulated magnetic biochar composite derived from rice residue: application for As(III) and As(V) polluted water purification. J. Hazard. Mater. 423, 127081 (2022)

    Article  CAS  PubMed  Google Scholar 

  39. X.H. Wang, X. Li, L.L. Peng, S.Q. Han, C. Hao, C.L. Jiang, H.L. Wang, X.B. Fan, Effective removal of heavy metals from water using porous lignin-based adsorbents. Chemosphere 279, 130504 (2021)

    Article  CAS  PubMed  Google Scholar 

  40. X.P. Gao, C. Guo, J.J. Hao, Y. Zhang, M.Y. Li, Z. Zhao, Efficient removal of Cr(VI) by modified sodium alginate via synergistic adsorption and photocatalytic reduction. Appl. Surf. Sci. 579, 152259 (2022)

    Article  CAS  Google Scholar 

  41. S.Y. Bao, W.W. Yang, Y.J. Wang, Y.S. Yua, Y.Y. Sun, K.F. Li, PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of Cr(VI) from aqueous solutions by adsorption combined with reduction: behaviors and mechanisms. Chem. Eng. J. 399, 125762 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Anhui Provincial Natural Science Foundation General Project (2008085ME139); Anhui Province Key R&D and Development Plan Project (2022107020006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Feng.

Ethics declarations

Conflict of interest

All authors have declared no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B.D., Sarkodie, B., Yang, X. et al. Reusable UiO-66-NH2 Functionalized Polyacrylonitrile Nanofiber Membrane for Effective Removal of Cr(VI) from Water. Fibers Polym 25, 829–842 (2024). https://doi.org/10.1007/s12221-023-00453-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00453-9

Keywords

Navigation