Skip to main content
Log in

Regenerated Cellulose Fiber Functionalization by Two-step Oxidation Using Sodium Periodate and Sodium Chlorite — Impact on the Structure and Sorption Properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Successful conversion of cellulose hydroxyl (OH) to carboxyl (COOH) groups is the goal of many modification procedures since COOH groups enhance the polarity of the fibers’ surface and can be used for further fibers’ functionalization. In this work, in order to obtain 2,3-dicarboxycellulose, the regenerated cellulose fibers (viscose) in the form of fabric were functionalized through two-step oxidation: with NaIO4 to introduce CHO groups followed by NaClO2 for CHO conversion to COOH groups. After oxidations, the fibers’ morphology, surface chemistry, crystallinity, and surface charge were investigated using scanning electron microscopy (SEM), Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction analysis (XRD), and zeta potential measurements, respectively, as well as content of COOH groups determined by volumetric titrations. Sorption properties, i.e. moisture sorption, water retention power, and sorption of silver ions (Ag+) were evaluated and correlated with oxidation parameters. The interaction with model ion — Ag+ revealed that COOH groups, when maximum content obtained in oxidized fibers was 0.27 mmol·g−1, were available for binding Ag+ in nearly 1:1 ratio. The proposed oxidative protocol represents an effective method for COOH groups’ introduction into regenerated cellulose fibers, improvement of fibers’ sorption properties without deterioration of their crystallinity, and opens up a possibility for further functionalization of 2,3-dicarboxycellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Isogai, T. Saito, and H. Fukuzumi, Nanoscale, 3, 71 (2011).

    Article  CAS  Google Scholar 

  2. T. Nikolic, M. Korica, J. Milanovic, A. Kramar, Z. Petronijevic, and M. Kostic, Cellulose, 24, 1863 (2017).

    Article  CAS  Google Scholar 

  3. K. A. Kristiansen, A. Potthast, and B. E. Christensen, Carbohyd. Res., 345, 1264 (2010).

    Article  CAS  Google Scholar 

  4. J. Lindh, D. O. Carlsson, M. Strømme, and A. Mihranyan, Biomacromolecules, 15, 1928 (2014).

    Article  CAS  Google Scholar 

  5. T. Nikolić, M. Kostić, J. Praskalo, Ž. Petronijević, and P. Škundrić, Chem. Ind. Chem. Eng. Q., 17, 367 (2011).

    Article  Google Scholar 

  6. A. Potthast, M. Kostic, S. Schiehser, P. Kosma, and T. Rosenau, Holzforschung, 61, 662 (2007).

    Article  CAS  Google Scholar 

  7. H. Liimatainen, M. Visanko, J. A. Sirvio, O. E. O. Hormi, and J. Niinimaki, Biomacromolecules, 13, 1592 (2012).

    Article  CAS  Google Scholar 

  8. D. J. Mendoza, C. Browne, V. S. Raghuwanshi, G. P. Simon, and G. Garniera, Carbohyd. Polym., 226, 115292 (2019).

    Article  CAS  Google Scholar 

  9. R. E. Abou-Zeid, S. Dacrory, K. A. Ali, and S. Kamel, Int. J. Bio. Macromol., 119, 207 (2018).

    Article  CAS  Google Scholar 

  10. V. L. Durán, P. A. Larsson, and L. Wågberg, Carbohyd. Polym., 182, 1 (2018).

    Article  Google Scholar 

  11. L. Münster, B. Hanulíková, M. Machovský, F. Latečka, I. Kuřitka, and J. Vícha, Carbohyd. Polym., 229, 115503 (2020).

    Article  Google Scholar 

  12. A. Jamshaid, A. Hamid, N. Muhammad, A. Naseer, M. Ghauri, J. Iqbal, S. Rafiq, and N. S. Shah, ChemBioEng. Rev., 4, 240 (2017).

    Article  CAS  Google Scholar 

  13. L. Budama, B. A. Çakır, Ö. Topel, and N. Hoda, Chem. Eng. J., 228, 489 (2013).

    Article  CAS  Google Scholar 

  14. R. Dastjerdi and M. Montazer, Colloid. Surface B., 79, 5 (2010).

    Article  CAS  Google Scholar 

  15. T. Nikolic, J. Milanovic, A. Kramar, Z. Petronijevic, Lj. Milenkovic, and M. Kostic, Cellulose, 21, 1369 (2014).

    Article  CAS  Google Scholar 

  16. E. Toshikj, A. Tarbuk, K. Grgić, B. Mangovska, and I. Jordanov, Cellulose, 26, 777 (2019).

    Article  CAS  Google Scholar 

  17. E. J. Parks and R. L. Hebert, Tappi. J., 55, 1510 (1972).

    CAS  Google Scholar 

  18. P. Calvini, A. Gorassini, G. Luciano, and E. Franceschi, Vib. Spectrosc., 40, 177 (2006).

    Article  CAS  Google Scholar 

  19. A. D. French, Cellulose, 21, 885 (2014).

    Article  CAS  Google Scholar 

  20. P. Patnaik, “Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil, and Solid Waste”, CRC Press, Boca Raton, 1997.

    Book  Google Scholar 

  21. F. Carrillo, X. Colom, J. J. Suñol, and J. Saurina, Eur. Polym. J., 40, 2229 (2004).

    Article  CAS  Google Scholar 

  22. M. Schwanninger, J. C. Rodrigues, H. Pereira, and B. Hinterstoisser, Vib. Spectrosc., 36, 23 (2004).

    Article  CAS  Google Scholar 

  23. J. Široky, R. S. Blackburn, T. Bechtold, J. Taylor, and P. White, Cellulose, 17, 103 (2010).

    Article  Google Scholar 

  24. A. Kljun, T. A. S. Benians, F. Goubet, F. Meulewaeter, J. P. Knox, and R. S. Blackburn, Biomacromolecules, 12, 4121 (2011).

    Article  CAS  Google Scholar 

  25. A. A. M. A. Nada, S. Kamel, and M. El-Sakhawy, Polym. Degrad. Stabil., 70, 347 (2000).

    Article  CAS  Google Scholar 

  26. S. Y. Oh, D. I. Yoo, Y. Shin, and G. Seo, Carbohyd. Res., 340, 417 (2005).

    Article  CAS  Google Scholar 

  27. M. Siller, H. Amer, M. Bacher, W. Roggenstein, T. Rosenau, and A. Potthast, Cellulose, 22, 2245 (2015).

    Article  CAS  Google Scholar 

  28. A. D. French, Cellulose, 27, 5445 (2020).

    Article  Google Scholar 

  29. T. Nikolić, T. Hajnrih, A. Kramar, Z. Petronijević, and M. Kostić, Cell. Chem. Technol., 52, 459 (2018).

    Google Scholar 

  30. Y. Yue, J. Han, G. Han, Q. Zhang, A. D. French, and Q. Wu, Carbohyd. Polym., 133, 438 (2015).

    Article  CAS  Google Scholar 

  31. K. Stana-Kleinschek, V. Ribitsch, T. Kreže, M. Sfiligoj-Smole, and Z. Peršin, Lenzinger Berichte, 82, 83 (2003).

    Google Scholar 

  32. T. Luxbacher, “The Zeta Guide Principles of the Streaming Potential Technique”, Anton Paar GmbH, Austria, 2014.

    Google Scholar 

  33. K. Stana-Kleinschek, T. Kreze, V. Ribitsch, and S. Strand, Colloid. Surface A., 195, 275 (2001).

    Article  CAS  Google Scholar 

  34. A. Tarbuk, K. Grgić, E. Toshikj, D. Domović, D. Dimitrovski, V. Dimova, and I. Jordanov, Cellulose, 27, 3107 (2020).

    Article  CAS  Google Scholar 

  35. S. Ifuku, M. Tsuji, M. Morimoto, H. Saimoto, and H. Yano, Biomacromolecules, 10, 2714 (2009).

    Article  CAS  Google Scholar 

  36. T. Saito and A. Isogai, Carbohyd. Polym., 61, 183 (2005).

    Article  CAS  Google Scholar 

  37. M. Wu, S. Kuga, and Y. Huang, Langmuir, 24, 10494 (2008).

    Article  CAS  Google Scholar 

  38. V. Ilić, Z. Šaponjić, V. Vodnik, B. Potkonjak, P. Jovančcić, J. Nedeljković, and M. Radetić, Carbohyd. Polym., 78, 564 (2009).

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Andrijana Žekić (Faculty of Physics, University of Belgrade) for SEM measurements, Nenad Tadić (Faculty of Physics, University of Belgrade) for XRD measurements and Aleksandra Mašulović (Innovation center of Faculty of Technology and Metallurgy, University of Belgrade) for obtaining ATR-FTIR spectra. This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2020-14/200135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kramar.

Supplementary material

12221_2021_996_MOESM1_ESM.pdf

Regenerated cellulose fiber functionalization by two-step oxidation using sodium periodate and sodium chlorite — Impact on the structure and sorption properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramar, A., Ivanovska, A. & Kostić, M. Regenerated Cellulose Fiber Functionalization by Two-step Oxidation Using Sodium Periodate and Sodium Chlorite — Impact on the Structure and Sorption Properties. Fibers Polym 22, 2177–2186 (2021). https://doi.org/10.1007/s12221-021-0996-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0996-8

Keywords

Navigation