Skip to main content
Log in

The Natural Fiber Reinforced Thermoplastic Composite Made of Woven Bamboo Fiber and Polypropylene

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The aim of this study was to study the mechanical properties of woven bamboo fiber (WBF) reinforced polypropylene (PP) composites. The bamboo fiber mat was constructed manually by hand. The WBF/PP composites were fabricated by thermoforming process. The basic characteristics of the bamboo strips, such as density, cross section, and tensile properties were measured first. The strengths of the bamboo strip in different sizes were measured, and they were around 400 MPa after 5 wt% alkali treatment. The WBF/PP composite with alkali treated bamboo fibers had better tensile strength than that with untreated bamboo fibers. The strength and modulus are about two times larger in longitudinal direction, while they are about the same in the transverse direction. For the hygrothermal aging test, the composites were highly sensitive to moisture, which could degrade the composites mechanical properties. In the bamboo fiber preforming process, the moisture can enhance the formability of the woven bamboo fiber mat and prevent the bamboo fiber to spring back after forming. The experimental results implied that the preforming of the woven bamboo fiber mat into complex shape is feasible under the wet condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hobson and M. Carus, JEC, Paris, France: JEC Composite, 63, 31 (2011).

    Google Scholar 

  2. Q. Liu, T. Stuart, M. Hughes, H. Sharma, and G. Lyons, Compos. Part A: Appl. Sci. Manuf., 38, 1403 (2007).

    Article  Google Scholar 

  3. L. Yan, N. Chouw, and K. Jayaraman, Compos. Part B: Eng., 56, 296 (2014).

    Article  CAS  Google Scholar 

  4. S. Chakraborty, S. P. Kundu, A. Roy, B. Adhikari, and S. Majumder, Constr. Build. Mater., 49, 214 (2013).

    Article  CAS  Google Scholar 

  5. S. M. Islam, R. R. Hussain, and M. A. Z. Morshed, J. Compos. Mater., 46, 111 (2012).

    Article  CAS  Google Scholar 

  6. M. Mansur and M. Aziz, International Journal of Cement Composites and Lightweight Concrete, 4, 75 (1982).

    Article  Google Scholar 

  7. X. Li, Y. Li, Z. Zhong, D. Wang, J. A. Ratto, K. Sheng, and X. S. Sun, Bioresour. Technol., 100, 3556 (2009).

    Article  CAS  Google Scholar 

  8. E. C. Ramires, J. D. Megiatto Jr., C. Gardrat, A. Castellan, and E. Frollini, Bioresour. Technol., 101, 1998 (2010).

    Article  CAS  Google Scholar 

  9. N. Reddy and Y. Yang, Bioresour. Technol., 100, 3563 (2009).

    Article  CAS  Google Scholar 

  10. M. Das and D. Chakraborty, J. Appl. Polym. Sci., 107, 522 (2008).

    Article  CAS  Google Scholar 

  11. S. Amada, Y. Ichikawa, T. Munekata, Y. Nagase, and H. Shimizu, Compos. Part B: Eng., 28, 13 (1997).

    Article  Google Scholar 

  12. W.-B. Young and Y.-C. Tsao, J. Compos. Mater., 49, 2803 (2015).

    Article  CAS  Google Scholar 

  13. T.-N. Chou and W.-B. Young, J. Aeronaut. Astronaut. Aviat., 50, 237 (2018).

    Google Scholar 

  14. J.-K. Huang and W.-B. Young, Compos. Part B: Eng., 166, 272 (2019).

    Article  CAS  Google Scholar 

  15. S. Ochi, Int. J. Compos. Mater., 2, 1 (2012).

    Google Scholar 

  16. R. Sukmawan, H. Takagi, and A. N. Nakagaito, Compos. Part B: Eng., 84, 9 (2016).

    Article  CAS  Google Scholar 

  17. H. Takagi and Y. Ichihara, JSME Int. J. Series A Solid Mech. Mater. Eng., 47, 551 (2004).

    Article  Google Scholar 

  18. A. Karmaker, J. Mater. Sci. Lett., 16, 462 (1997).

    Article  CAS  Google Scholar 

  19. M. M. Thwe and K. Liao, Compos. Sci. Technol., 63, 375 (2003).

    Article  CAS  Google Scholar 

  20. R. S. Mbakop, G. Lebrun, and F. Brouillette, Compos. Part A: Appl. Sci. Manuf., 109, 604 (2018).

    Article  CAS  Google Scholar 

  21. R. Hao and W. Liu, Furniture & Interior Design, 4, 13 (2014).

    Google Scholar 

  22. H.-H. Chiu and W.-B. Young, Fiber. Polym., 21, 2938 (2020).

    Article  CAS  Google Scholar 

  23. S. Jain, R. Kumar, and U. Jindal, J. Mater. Sci., 27, 4598 (1992).

    Article  CAS  Google Scholar 

  24. S. K. Samal, S. Mohanty, and S. K. Nayak, J. Reinf. Plast. Compos., 28, 2729 (2009).

    Article  CAS  Google Scholar 

  25. K. Okubo, T. Fujii, and Y. Yamamoto, Compos. Part A: Appl. Sci. Manuf., 35, 377 (2004).

    Article  Google Scholar 

  26. A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999).

    Article  CAS  Google Scholar 

  27. H. N. Dhakal, Z. Y. Zhang, and M. O. W. Richardson, Compos. Sci. Technol., 67, 1674 (2007).

    Article  CAS  Google Scholar 

  28. A. Stamboulis, C. A. Baillie, and T. Peijs, Compos. Part A: Appl. Sci. Manuf., 32, 1105 (2001).

    Article  Google Scholar 

  29. W. Chunhong, L. Shengkai, and Y. Zhanglong, J. Reinf. Plast. Compos., 35, 1062 (2016).

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank for the financial support from Ministry of Science and Technology in Taiwan under the contract number of MOST 108-2221-E-006-068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bin Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BJ., Young, WB. The Natural Fiber Reinforced Thermoplastic Composite Made of Woven Bamboo Fiber and Polypropylene. Fibers Polym 23, 155–163 (2022). https://doi.org/10.1007/s12221-021-0982-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0982-1

Keywords

Navigation