Skip to main content
Log in

Influence of Porosity and Yarn Linear Density on the Thermal Behaviour of Polyester Warp Knitted Spacer Fabrics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Spacer fabrics are 3D fabrics comprising of two outer fabric layers that are joined together and kept apart by an insert of spacer yarns, mostly monofilaments. This creates a ventilated layer of air, allowing heat and moisture to escape. Material types and the surface characteristics of the layers influence the thermoregulation properties of the spacer fabrics. In this study, Warp Knitted Spacer Fabrics (WKSF) were designed with polyester multifilament in face and back surface layers and are linked by middle layer made of polyester monofilament. Three-factorial Box and Behnken experimental design was used and the effects of different polyester filament denier combinations of face, middle and bottom layers and the porosity of the fabric on the thermoregulation properties were analysed. The analysis of variance (ANOVA) and response surface design (RSM) were used for the optimization of porosity and thermal properties of the WKSF. The experimental result indicates that among the three layers of polyester WKSF, the face layer has exceptional influence on all the responses and the bottom layer has trivial or no impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Öner and A. Okur, J. Text. Inst., 106, 1403 (2005).

    Article  Google Scholar 

  2. Shabaridharan and A. Das, Fiber. Polym., 13, 522 (2012).

    Article  CAS  Google Scholar 

  3. N. Oglakcioglu and A. Marmarali, Fibres Text. East. Eur., 15, 94 (2007).

    CAS  Google Scholar 

  4. B. R. Das, D. Bhattacharjee, K. Kumar, and A. Srivastava, Res. J. Text. Apparel, 17, 133 (2013).

    Article  Google Scholar 

  5. V. K. Kothari, Indian J. Fib. Tex. Res., 31, 177 (2006).

    CAS  Google Scholar 

  6. M. J. Geraldes, L. Hes, M. De Araujo, N. Belino, and M. F. Nunes, AUTEX Res. J., 8, 30 (2008).

    Google Scholar 

  7. E. A. Elnashar, AUTEX Res. J., 5, 207 (2005).

    Google Scholar 

  8. A. Bivainyte and D. Mikucioniene, Fibres Text. East. Eur., 19, 69 (2011).

    Google Scholar 

  9. G. Ertekin and A. Marmaral, Tekstil ve Konfeksiyon, 21, 369 (2011).

    Google Scholar 

  10. C. Prakash and G. Ramakrishnan, Int. J. Thermophys., 34, 113 (2013).

    Article  CAS  Google Scholar 

  11. A. Bivainytė and D. Mikučionienė, Fibres Text. East. Eur., 19, 69 (2011).

    Google Scholar 

  12. M. A. R. AL-ansary, Life Sci. J., 9, 79 (2012).

    Google Scholar 

  13. B. Das, A. Das, V. K. Kothari, R. Fanguiero, and M. De Araujo, Fiber. Polym., 9, 225 (2008).

    Article  Google Scholar 

  14. H. K. Kaynak and O. Babaarslan, Elect. J. Tex. Tech., 3, 30 (2011).

    Google Scholar 

  15. B. Crina, M. Blaga, V. Luminita, and R. Mishra, Tekstil ve Konfeksiyon, 23, 220 (2013).

    Google Scholar 

  16. T. Palani Rajan and S. Sundaresan, J. Ind. Text., 49, 1218 (2018).

    Article  Google Scholar 

  17. N. Oğlakcioğlu and A. Marmarali, Fibres Text. East. Eur., 15, 64 (2007).

    Google Scholar 

  18. B. Sathish Babu, P. Senthilkumar, and M. Senthilkumar, Ind. Text., 66, 123 (2015).

    Google Scholar 

  19. D. Mikucioniene, L. Milasiute, J. Baltusnikaite, and R. Milasius, Fibres Text. East. Eur., 20, 66 (2012).

    Google Scholar 

  20. R. L. Barker, K. L. Hatch, H. I. Maibach, N. L. Markee, P. Radhkrishnaiah, and S. S. Woo, Text. Res. J., 60, 405 (1990).

    Article  Google Scholar 

  21. A. Afzal, S. Ahmad, A. Rasheed, F. Ahmad, F. Iftikhar, and Y. Nawab, AUTEX Res. J., 17, 20 (2017).

    Article  CAS  Google Scholar 

  22. A. Majumdar, S. Mukhopadhyay, and R. Yadav, Int. J. Thermal Sci., 49, 2042 (2010).

    Article  Google Scholar 

  23. C. Prakash and G. Ramakrishnan, AUTEX Res. J., 11, 102 (2011).

    Google Scholar 

  24. C. Prakash and G. Ramakrishnan, Int. J. Thermophys., 33, 1 (2012).

    Article  Google Scholar 

  25. H. K. Kaynak and O. Babaarslan, Fibres Text. East. Eur., 24, 89 (2016).

    Article  Google Scholar 

  26. E. Onofrei, A. M. Rocha, and A. Catarino, J. Eng. Fiber. Fabrics, 6, 10 (2011).

    Google Scholar 

  27. Y. Liu, H. Hu, H. Long, and L. Zhao, Tex. Res. J., 82, 773 (2012).

    Article  CAS  Google Scholar 

  28. X. Ye, H. Hu, and X. Feng, J. Ind. Text., 37, 213 (2008).

    Article  Google Scholar 

  29. A. Davies and J. Williams, J. Fiber Bioeng. Inform., 1, 321 (2009).

    Google Scholar 

  30. R. Bagherzadeh, M. Montazer, M. Latifi, M. Sheikhzadeh, and M. Sattari, Fiber. Polym., 8, 386 (2007).

    Article  CAS  Google Scholar 

  31. X. Guo, H. Long, Y. Sun, and L. Zhao, Tex. Res. J., 83, 1467 (2013).

    Article  CAS  Google Scholar 

  32. M. Shanna Bruer and G. Smith, J. Text. Appar. Tech. Manag., 4, 1 (2005).

    Google Scholar 

  33. F. Mokhtari, M. Shamshirsaz, M. Latifi, and M. Maroufi, J. Eng. Fiber. Fabrics, 6, 23 (2011).

    Google Scholar 

  34. F. Mokhtari, P. M. Vaghefi, M. Shamshirsaz, and M. Latifi, J. Eng. Fiber. Fabrics, 8, 125 (2013).

    Google Scholar 

  35. Y. Liu and H. Hu, J. Text. Ins., 102, 366 (2011).

    Article  CAS  Google Scholar 

  36. T. Palani Rajan, G. Ramakrishnan, S. Sundaresan, and P. Kandhavadivu, Int. J. Fash. Des. Tech. Edu., 10, 37 (2017).

    Article  Google Scholar 

  37. M. Li, S. Wang, Z. Zhang, and B. Wu, Appl. Compos. Mat., 16, 1 (2009).

    Article  Google Scholar 

  38. Z. Ming-Xing and H. U. Hong, J. Xi’ Poly. Univ., 23, 285 (2009).

    Google Scholar 

  39. T. P. Rajan, L. D. Souza, G. Ramakrishnan, P. Kandhavadivu, and C. Vigneswaran, J. Ind. Text., 45, 796 (2016).

    Article  Google Scholar 

  40. T. P. Rajan, L. D. Souza, G. Ramakrishnan, and G. M. Zakriya, J. Ind. Text., 45, 1239 (2016).

    Article  CAS  Google Scholar 

  41. T. Palani Rajan, G. Ramakrishnan, and P. Kandhavadivu, J. Text. Inst., 107, 1079 (2016).

    Article  Google Scholar 

  42. G. B. Delkumburewatte and T. Dias, Fiber. Polym., 10, 226 (2009).

    Article  Google Scholar 

  43. A. Çay and I. Tarakçıoğlu, J. Text. Inst., 99, 499 (2008).

    Article  Google Scholar 

  44. R. T. Ogulata and S. Mezarcioz, J. Text. Inst., 103, 654 (2012).

    Article  CAS  Google Scholar 

  45. G. K. Tyagi and D. Sharma, Ind. J. Fibres Tex. Res., 30, 363 (2005).

    CAS  Google Scholar 

  46. M. Mao and S. J. Russell, Text. Res. J., 77, 914 (2007).

    Article  CAS  Google Scholar 

  47. G. E. P. Box and D. W. Behnken, Technometrics, 2, 455 (1960).

    Article  Google Scholar 

  48. G. E. P. Box and N. R. Draper, J. American Stat. Asso., 54, 622 (1959).

    Article  Google Scholar 

  49. T. Palani Rajan and S. Das, Ind. J. Fibre Text. Re., 45, 32 (2020).

    CAS  Google Scholar 

  50. X. Zhang, X. Chao, L. Lou, J. Fan, Q. Chen, B. Li, L. Ye, and D. Shou, Compos. Commun., https://doi.org/10.1016/j.coco.2020.100595 (2021).

  51. Y. El-Hage, S. Hind, and F. Robitaille, J. Text. Fibrous Mat., 1, 12 (2018).

    Google Scholar 

  52. S. Liu, J. Gong, and B. Xu, Polymers, 10, 748 (2018).

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Palani Rajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palani Rajan, T., Kandhavadivu, P. & Periyasamy, A.P. Influence of Porosity and Yarn Linear Density on the Thermal Behaviour of Polyester Warp Knitted Spacer Fabrics. Fibers Polym 22, 3212–3221 (2021). https://doi.org/10.1007/s12221-021-0707-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0707-5

Keywords

Navigation