Skip to main content
Log in

Developing Antibacterial Cotton Fabric with Zinc Borate Impregnation Process

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Cotton fabric is a commonly used textile because of its natural and healthy properties. The chemical structure of cotton consists cellulose with a ratio of over 90 %. Cellulose is a natural polymer and cotton fabric is a quiet useful textile because of its better moisture absorption, softness, and easy care properties. Moisture absorbtion property comes from the cellulosic structure of the fabric. However, its features such as being hydrophilic and inclinable to bacterial growth limits its application areas. Antibacterial cotton fabric may be used for hospital textiles such as hospital gowns, patient clothes, wound bandages; food packaging and storage textiles; home textiles like curtain, bed cover; clothing, etc. In this study, a novel environmentally friendly antibacterial cotton fabric was developed. Flame retardant zinc borate was used as antibacterial agent. For this purpose, zinc borate with a formula of ZnO·3B2O3·7H2O had been synthesized with wet chemical precipitation method and cotton fabric was treated with this material via sol-gel impregnation method. The impregnation method for cotton fabric provided a uniform distribution of zinc borate particles and processing the entire volume of the fiber. This method is also suitable for large quantity production processes. In the microbiological studies, Enterococcus which is commonly associated with the nosocomial infections and food spoilage was used. As a result, the antibacterial activity was observed in the fabrics treated with 0.1 mol·l−1 and 0.2 mol·l−1 concentration of zinc borate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Shi, Y. Xiao, M. Li, L. Yuan, and J. Sun, Powder Technology, 186, 263 (2007).

    Article  Google Scholar 

  2. D. M. Schubert, F. Alam, M. Z. Visi, and C. B. Knobler, Chem. Mater., 15, 866 (2003).

    Article  CAS  Google Scholar 

  3. Y. Anwar and K. M. Alghamdi, Polym. Test., 81, 106258 (2020).

    Article  CAS  Google Scholar 

  4. U. B. Altinok, MSc Dissertation, Süleyman Demirel University, Isparta, 2008.

  5. L. Zhong and X. Gong, Soft Matter, 15, 9500 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. J. Peng, X. Zhao, W. Wang, and X. Gong, Langmuir, 35, 8404 (2019).

    CAS  PubMed  Google Scholar 

  7. X. Gong, J. Zhang, and S. Jiang, Chem. Commun., 56, 3054 (2020).

    Article  CAS  Google Scholar 

  8. J. Liang, C. Huang, and X. Gong, ACS Sustainable Chem. Eng., 7, 18213 (2019).

    Article  CAS  Google Scholar 

  9. Y. Tian, Y. Guo, M. Jiang, Y. Sheng, B. Hari, G. Zhang, Y. Jiang, B. Zhou, Y. Zhu, and Z. Wang, Mater. Lett., 60, 2511 (2006).

    Article  CAS  Google Scholar 

  10. N. B. Acarali, N. Tugrul, E. M. Derun, and S. Piskin, Int. J. Min. Met. Mater., 20, 1081 (2013).

    Article  CAS  Google Scholar 

  11. N. Tugrul, M. Bardakci, and E. Ozturk, Res. Chem. Intermed., 41, 4395 (2015).

    Article  CAS  Google Scholar 

  12. A. V. Abramova, V. O. Abramov, V. M. Bayazitov, Y. Voitov, E. A. Straumal, S. A. Lermontov, T. A. Cherdyntseva, P. Braeutigam, M. Weiße, and K. Günther, Ultrasonics-Sonochemistry, 60, 104788 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. L. Zhou, H. Wang, J. Du, J. Fu, and W. Wang, Fiber. Polym., 19, 1228 (2018).

    Article  CAS  Google Scholar 

  14. Y. Zhang, Y. Li, and Q. Hu, Int. J. Cloth. Sci. Technol., 24, 118 (2012).

    Article  CAS  Google Scholar 

  15. A. M. Abdel-Mohsen, R. M. Abdel-Rahman, R. Hrdina, A. Imramovsḱy, L. Burgert, and A. S. Aly, Int. J. Biol. Macromol., 50, 1245 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. J. Ru, X. Qian, and Y. Wang, Cellulose, 25, 5443 (2018).

    Article  CAS  Google Scholar 

  17. D. Gao, C. Chen, J. Ma, X. Duan, and J. Zhang, Chem. Eng. J., 258, 85 (2014).

    Article  CAS  Google Scholar 

  18. R. Hu, J. Yang, P. Yang, Z. Wu, H. Xiao, Y. Liu, and M. Lu, Cellulose, 27, 2901 (2020).

    Article  CAS  Google Scholar 

  19. N. Pan, Y. Liu, X. Ren, and T.-S. Huang, Colloid Surf. A-Physicochem. Eng. Asp., 555, 765 (2018).

    Article  CAS  Google Scholar 

  20. S. Li, X. Lin, Y. Liu, R. Li, X. Ren, and T.-S. Huang, Cellulose, 26, 4213 (2019).

    Article  CAS  Google Scholar 

  21. D. Gao, Y. Li, B. Lyu, D. Jin, and J. Ma, Cellulose, 27, 1055 (2020).

    Article  CAS  Google Scholar 

  22. R. Navik, L. Thirugnanasampanthan, H. Venkatesan, Md. Kamruzzaman, F. Shafiq, and Y. Cai, Cellulose, 24, 3573 (2017).

    Article  CAS  Google Scholar 

  23. V. Sadanand, H. Tian, A. V. Rajulu, and B. Satyanarayana, Int. J. Polym. Anal. Ch., 22, 275 (2017).

    Article  CAS  Google Scholar 

  24. N. V. K. Thanh and N. T. P. Phong, J. Phys.: Conf. Ser., 187, 012072 (2009).

    Google Scholar 

  25. Y. Gao and R. Cranston, Text. Res. J., 78, 60 (2008).

    Article  CAS  Google Scholar 

  26. S. Palamutcu, R. Keskin, N. Devrent, M. Sengül, and B. Hasçelik, Electr. J. Text. Technol., 3, 95 (2009).

    Google Scholar 

  27. D. J. Bolton, A. M. Doherty, and J. J. Sheridan, Int. J. Food Microbiol., 66, 119 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. D. Barrie, P. N. Hoffman, J. A. Wilson, and J. M. Kramer, Epidemiol. Infect., 113, 297 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. W. A. Brunton, The Lanclet, 345, 1574 (1995).

    Article  CAS  Google Scholar 

  30. K. E. Orr, M. G. Holliday, A. L. Jones, I. Robson, and J. D. Perry, J. Hosp. Inf., 50, 133 (2002).

    Article  CAS  Google Scholar 

  31. S. Fijan, S. Šostar-Turk, and A. J. Cenci, Hosp. Infect., 61, 30 (2005).

    Article  CAS  Google Scholar 

  32. G. D. Armstrong, Int. J. Food Microbiol., 50, 19 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Ş. Direkel, E. Sultan Akpinar, E. Uzunoğlu Karagöz, and G. Bayram Abiha, Van Tip Derg., 26, 268 (2019).

    Google Scholar 

  34. L. Windler, M. Height, and B. Nowack, Environ. Int., 53, 62 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. G. J. Banwart, “Basic Food Microbiology”, p.371, Chapman and Hall, London, 1989.

    Google Scholar 

  36. E. Tsakalıdou, E. Manolopoulou, V. Tsılıbary, M. Georgalakı, and G. Kalantropoulos, Neth Milk Dairy J., 47, 145 (1993).

    Google Scholar 

  37. C. P. Dunne, M. M. Keinänen-Toivola, A. Kahru, B. Teunissen, H. Olmez, I. Gouveia, L. Melo, K. Murzyn, M. Modic, M. Ahonen, P. Askew, and T. Papadopoulos, Bioeng., 8, 679 (2017).

    Google Scholar 

  38. Q. B. Xu, L. Xie, H. Diao, F. Li, Y. Y. Zhang, F. Y. Fu, and X. D. Liu, Carbohydr. Polym., 177, 187 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. M. I. H. Mondal and J. Saha, J. Polym. Environ., 27, 405 (2019).

    Article  CAS  Google Scholar 

  40. H. B. Ahmed, N. S. Hawary, and H. E. Emam, Int. Biol. Macromol., 105, 720 (2017).

    Article  CAS  Google Scholar 

  41. S. B. Humphrey, Patent No. 3,524,761 (1970).

  42. AATCC Test Method 147-2004, “Antibacterial Activity Assessment of Textile Materials: Parallel Streak Method”, AATCC Technical Manual, American Association of Textile Chemists and Colorists, Research Triangle Park, NC, 2005.

    Google Scholar 

  43. H. Gazi, S. Kurutepe, S. Surucuoğlu, T. Ecemi, and B. Ozbakkaloğlu, ANKEM Dergisi, 18, 49 (2004).

    Google Scholar 

  44. A. Pfennig in “Encyclopedia of Chemical Technology”, 4th eds., pp.910–961 and p.407, John Wiley and Sons, New York, 1994.

    Google Scholar 

  45. C. Tascioglu, K. Umemura, T. Yoshimura, and K. Tsunoda, Compos. Part B: Eng., 57, 31 (2014).

    Article  CAS  Google Scholar 

  46. T. Wakida, T. Moria, M. Lee, H. Yoshioka, and Y. Yanai, Text. Res. J., 70, 161 (2000).

    Article  CAS  Google Scholar 

  47. P. Zugenmaier (Ed.), “Crystalline Cellulose and Derivatives: Characterization and Structures”, pp.101–174, Springer Series in Wood Science, Springer, Berlin/Heidelberg, Germany, 2008.

    Book  Google Scholar 

  48. R. C. R. Nunes, “Rubber Nanocomposites with Nanocellulose, Progress in Rubber Nanocomposites”, pp.463–494, Woodhead Publishing Series in Composites Science and Engineering, 2017.

  49. M. R. Imer, M. González, N. Veiga, C. Kremer, L. Suescun, and L. Arizaga, Dalton Trans., 46, 15736 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. P. Langan, S. Gnanakaran, K. D. Rector, N. Pawley, D. T. Fox, D. W. Chof, and K. E. Hammel, Energy Environ. Sci., 4, 3820 (2011).

    Article  CAS  Google Scholar 

  51. I. S. Tania and M. Ali, Materials Today: Proceedings, doi: https://doi.org/10.1016/j.matpr.2020.08.171 (2020).

Download references

Acknowledgement

The zinc borate synthesis studies were financially supported by Research Fund of Munzur University (Project number: MFMUB017-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeliz İpek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İpek, Y., Ertekin, Ö. Developing Antibacterial Cotton Fabric with Zinc Borate Impregnation Process. Fibers Polym 22, 2826–2833 (2021). https://doi.org/10.1007/s12221-021-0670-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0670-1

Keywords

Navigation