Skip to main content
Log in

Wood-plastic Composite Based on Recycled Polypropylene and Amazonian Tucumã (Astrocaryum aculeatum) Endocarp Waste

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Natural fibre-based composites have been investigated as a viable ecological alternative to conventional materials, combining low-cost and sustainable features to engineering products. In tropical countries, such as Brazil, there are many lignocellulosic residues that are discarded in nature, polluting the environment, such as the Tucumã fruit, which generates about 50 tonnes/month of solid waste only in the city of Manaus (State of Amazonas). This work investigates a novel wood-plastic composite (WPC) made from recycled polypropylene (PP) and Tucumã endocarp powder (TEP) without coupling agents that encompasses social and environmental issues. WPCs are composed of 10, 20, 30, 40 and 50 wt% of TEP combined with PP by injection moulding, being characterised by SEM, FTIR, flammability, water absorption, ageing, tensile, compressive, three-point bending, impact and scratch tests. TEP does not react to the matrix phase, presenting 49.4 % and 37.4 % of cellulose and lignin, respectively. In general, the incorporation of TEP not only increases the elastic modulus and the dynamic friction coefficient, but also reduces the strength and the burning rate of WPCs. WPC preserves its physical integrity after ageing, absorbing up to 1.6 % of water. Composites made with 20 wt% of TEP can be considered promising materials to be used as wood plastic for sustainable engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. N. Matos, D. P. Lima, A. P. P. Barbosa, A. Z. Mercadante, and R. C. Chisté, Food Chem., 272, 216 (2019).

    Article  Google Scholar 

  2. F. O. J. Oboh, Int. J. Biomed. Heal. Sci., 5, 57 (2009).

    Google Scholar 

  3. S. L. F. Ramos, G. Dequigiovanni, A. M. Sebbenn, M. T. G. Lopes, P. Y. Kageyama, J. L. V. de Macêdo, M. Kirst, and E. A. Veasey, BMC Genet., 17, 63 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. A. C. Kieling, G. P. Santana, M. C. dos Santos, S. S. da Silva, C. L. S. Amorin, and J. R. Pontes, Scientia Amazonia, 8, 2 (2019).

    Google Scholar 

  5. L. Manzato, L. C. A. Rabelo, S. M. Souza, C. G. Silva, E. A. Sanches, D. Rabelo, L. A. M. Mariuba, and J. Simonsen, J. Mol. Struct., 1143, 229 (2017).

    Article  CAS  Google Scholar 

  6. P. Nygård, B. S. Tanem, T. Karlsen, P. Brachet, and B. Leinsvang, Compos. Sci. Technol., 68, 3418 (2008).

    Article  Google Scholar 

  7. Y. Yu, Y. Yang, M. Murakami, M. Nomura, and H. Hamada, Adv. Compos. Mater., 22, 425 (2013).

    Article  CAS  Google Scholar 

  8. A. Nourbakhsh and A. Ashori, Polym. Compos., 29, 569 (2008).

    Article  CAS  Google Scholar 

  9. G. Brokamp, N. Valderrama, M. Mittelbach, C. A. R. Grandez, A. S. Barfod, and M. Weigend, Bot. Rev., 77, 571 (2011).

    Article  Google Scholar 

  10. Y. T. G. Gowda, M. R. Sanjay, K. S. Bhat, P. Madhu, P. Senthamaraikannan, and B. Yogesha, Cogent. Eng., 5, 1446667 (2018).

    Article  Google Scholar 

  11. J. Wu, D. Yu, C. M. Chan, J. Kim, and Y. W. Mai, J. Appl. Polym. Sci., 76, 1000 (2000).

    Article  CAS  Google Scholar 

  12. T. W. Kim, S. Y. Lee, S. J. Chun, G. H. Doh, and K. H. Paik, J. Compos. Mater., 45, 1595 (2010).

    Article  Google Scholar 

  13. H. S. Katz in “Non-Silane Coupling Agents” (I. Skeist Ed.), Handbook of Adhesives. Springer, Boston, MA, 1990.

    Google Scholar 

  14. P. J. Van Soest, J. B. Robertson, and B. A. Lewi, J. Dairy Sci., 74, 3583 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. O. Väntsi and T. Kärki, J. Reinf. Plast. Compos., 34, 879 (2015).

    Article  Google Scholar 

  16. ASTM E1252-98, “Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis”, ASTM International, West Conshohocken, PA, 2013.

    Google Scholar 

  17. ASTM D3418-03, “Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry”, ASTM International, West Conshohocken, PA, 2003.

    Google Scholar 

  18. ASTM E2809-13, “Standard Guide for Using Scanning Electron Microscopy/X-ray Spectrometry in Forensic Paint Examinations”, ASTM International, West Conshohocken, PA, 2013.

    Google Scholar 

  19. ASTM D638-14, “Standard Test Method for Tensile Properties of Plastics”, ASTM International, West Conshohocken, PA, 2014.

    Google Scholar 

  20. ASTM D695-15, “Standard Test Method for Compressive Properties of Rigid Plastics”, ASTM International, West Conshohocken, PA, 2015.

    Google Scholar 

  21. ASTM D790-03, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials”, ASTM International, West Conshohocken, PA, 2003.

    Google Scholar 

  22. ASTM D256-04, “Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics”, ASTM International, West Conshohocken, PA, 2004.

    Google Scholar 

  23. ASTM D570-98, “Standard Test Method for Water Absorption of Plastics”, ASTM International, West Conshohocken, PA, 2018.

    Google Scholar 

  24. ASTM G171-03, “Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus”, ASTM International, West Conshohocken, PA, 2003.

    Google Scholar 

  25. ASTM D635-03, “Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position”, ASTM International, West Conshohocken, PA, 2003.

    Google Scholar 

  26. BS EN 60068-2-38:2009, “Environmental Testing Tests”, Test Z/AD: Composite Temperature/Humidity Cyclic Test, ISBN 978 0 580 52986 3, 2019.

  27. P. R. Rodrigues, M. F. L. Araújo, T. L. Rocha, R. V. S. Veloso, L. A. Pantoja, and A. S. Santos, PeerJ, 6, e5275 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. F. Xu, J. Yu, T. Tesso, F. Dowell, and D. Wang, Appl. Energy, 104, 801 (2013).

    Article  CAS  Google Scholar 

  29. H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Fuel, 86, 1781 (2007).

    Article  CAS  Google Scholar 

  30. O. Derkacheva and D. Sukhov, Macromol. Symp., 265, 61 (2008).

    Article  CAS  Google Scholar 

  31. Y. Liu, T. Hu, Z. Wu, G. Zeng, D. Huang, Y. Shen, X. He, M. Lai, and Y. He, Environ. Sci. Pollut. Res., 21, 14004 (2014).

    Article  CAS  Google Scholar 

  32. R. A. Díaz, “Thermal Analysis. Fundamentals and Applications to Material Characterization”, In: Proceedings of the International Seminar: Thermal Analysis and Rheology, Ferrol, 30 June-4 July, 2003, pp.121–140, Universidad da Coruña, 2005.

  33. M. S. Mat-Shayuti, M. Z. Abdullah and P. S. M. Megat-Yusoff, MATEC Web Conf., 69, 03001 (2016).

    Article  Google Scholar 

  34. A. M. P. Silva, D. E. Margalho, and D. S. C. Correia Junior, Rev. Mater., 25, https://doi.org/10.1590/S1517-707620200003.1131 (2020).

  35. A. B. L. Melo, L. F. L. Paiva, J. C. Santos, T. H. Panzera, and R. T. S. Freire, J. Res. Updat. Polym. Sci., 5, 108 (2016).

    Article  CAS  Google Scholar 

  36. J. C. Santos, T. H. Panzera, A. L. Christoforo, K. O. Vieira, M. A. Schiavon, and F. A. R. Lahr, J. Test. Eval., 44, 1535 (2016).

    Google Scholar 

  37. A. C. Kieling and G. P. Santana, Scientia Amazonia, 6, 24 (2017).

    Google Scholar 

  38. A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola, “Global Sensitivity Analysis: The Primer”, John Wiley & Sons, 2008.

  39. S. K. Najafi, Waste Manag., 33, 1898 (2013).

    Article  Google Scholar 

  40. I. Naghmouchi, P. Mutjé, and S. Boufi, Ind. Crops Prod., 72, 183 (2014).

    Article  Google Scholar 

  41. P. Y. Kuo, S. Y. Wang, J. H. Chen, H. C. Hsueh, and M. J. Tsai, Mater. Des., 30, 3489 (2009).

    Article  CAS  Google Scholar 

  42. H. Bouafif, A. Koubaa, P. Perré, and A. Cloutier, Compos. Part A Appl. Sci. Manuf., 40, 1975 (2009).

    Article  Google Scholar 

  43. ABNT NBR 13818:1997, “Placas cerâmicas para revestimento — especificação e métodos de ensaio”, Associação Brasileira de Normas Técnicas, 1997.

  44. Y. Arao, S. Nakamura, Y. Tomita, K. Takakuwa, T. Umemura, and T. Tanaka, Polym. Degrad. Stab., 100, 79 (2014).

    Article  CAS  Google Scholar 

  45. L. A. Lowden and T. R. Hull, Fire Sci. Rev., 2, 4 (2013).

    Article  Google Scholar 

  46. G. Guo, C. B. Park, Y. H. Lee, Y. S. Kim, and M. Sain, Polym. Eng. Sci., 47, 330 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Universidade Federal do Amazonas (UFAM), Universidade do Estado do Amazonas (UEA), Institute Nacional de Pesquisas da Amazônia (iNPA), Universidade de São Paulo (USP), Instituto de Desenvolvimento Tecnológco (INDT) and Tutiplast Company for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Túlio Hallak Panzera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kieling, A.C., Santana, G.P., Santos, M.C.D. et al. Wood-plastic Composite Based on Recycled Polypropylene and Amazonian Tucumã (Astrocaryum aculeatum) Endocarp Waste. Fibers Polym 22, 2834–2845 (2021). https://doi.org/10.1007/s12221-021-0421-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0421-3

Keywords

Navigation